期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
Imaging the Architecture of Mineral Systems and the Pathways of Ore-forming Fluids across Mongolia with Magnetotellurics
1
作者 Matthew J.COMEAU Rafael RIGAUD +4 位作者 Erdenechimeg BATMAGNAI Shoovdor TSERENDUG Sodnomsambuu DEMBEREL Michael BECKEN Alexey KUVSHINOV 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期11-13,共3页
In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and... In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019). 展开更多
关键词 MAGNETOTELLURICS electrical resistivity mineral exploration mineral emplacement ore fluids fluid transport
下载PDF
Magmatic-hydrothermal Evolution and Mineralization Mechanisms of the Wangjiazhuang Cu(-Mo)Deposit in the Zouping Volcanic Basin,Shandong Province,China:Constraints from Fluid Inclusions
2
作者 SHU Lei YANG Renchao +5 位作者 SHEN Kun YANG Deping MAO Guangzhou LI Min LIU Pengrui MA Xiaodong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期679-700,共22页
The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics ... The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics of this porphyry-like hydrothermal deposit,a detailed fluid inclusion study has been conducted,employing the techniques of representative sampling,fluid inclusion petrography,microthermometry,Raman spectroscopy,LA-ICP-MS analysis of single fluid inclusions,as well as cathode fluorescence spectrometer analysis of host mineral quartz.The deposit contains mainly two types of orebodies,i.e.veinlet-dissemination-stockwork orebodies in the K-Si alteration zone and pegmatiticquartz sulfide veins above them.In addition,minor breccia ore occurs locally.Four types of fluid inclusions in the deposit and altered quartz monzonite are identified:L-type one-or two-phase aqueous inclusions,V-type vapor-rich inclusions with V/L ratios greater than 50%-90%,D-type multiphase fluid inclusions containing daughter minerals or solids and S-type silicate-bearing fluid inclusions containing mainly muscovite and biotite.Ore petrography and fluid inclusion study has revealed a three-stage mineralization process,driven by magmatic-hydrothermal fluid activity,as follows.Initially,a hydrothermal fluid,separated from the parent magma,infiltrated into the quartz monzonite,resulting in its extensive K-Si alteration,as indicated by silicate-bearing fluid inclusions trapped in altered quartz monzonite.This is followed by the early mineralization,the formation of quartz veinlets and dissemination-stockwork ores.During the main mineralization stage,due to the participation and mixing of meteoric groundwater with magmatic-sourced hydrothermal fluid,the cooling and phase separation caused deposition of metals from the hydrothermal fluids.As a result,the pegmatitic-quartz sulfide-vein ores formed.In the late mineralization stage,decreasing fluid salinity led to the formation of L-type aqueous inclusions and chalcopyrite-sulfosalt ore.Coexistence of V-type and D-type inclusions and their similar homogenization temperatures with different homogenization modes suggest that phase separation or boiling of the ore-forming fluids took place during the early and the main mineralization stages.The formation P-T conditions of S-type inclusions and the early and the main mineralization stages were estimated as ca.156-182 MPa and 450-650℃,350-450℃,18-35 MPa and 280-380℃,8-15 MPa,respectively,based on the microthermometric data of the fluid inclusions formed at the individual stages. 展开更多
关键词 fluid inclusions fluid immiscibility mineralization mechanisms Wangjiazhuang Cu(-Mo)deposit
下载PDF
Mineralization Styles and Genesis of the Yinkeng Au-Ag-Pb-Zn-Cu-Mn Polymetallic Orefield, Southern Jiangxi Province, SE China: Evidence from Geology, Fluid Inclusions, Isotopes and Chronology 被引量:14
3
作者 FENG Chengyou LI Daxin +2 位作者 ZENG Zailin ZHANG Dequan SHE Hongquan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第3期825-844,共20页
The Yinkeng orefield in Yudu County,Jiangxi Province,SE China,is a zone of concentrated Au-Ag-Pb-Zn-Cu-Mn polymetallic ores.Based on summing up basic geology and ore geology of the orefieid,the polymetallic deposits i... The Yinkeng orefield in Yudu County,Jiangxi Province,SE China,is a zone of concentrated Au-Ag-Pb-Zn-Cu-Mn polymetallic ores.Based on summing up basic geology and ore geology of the orefieid,the polymetallic deposits in the orefield have been divided into seven major substyles according to their occurring positions and control factors.The ore-forming fluid inclusion styles in the orefield include those of two-phase fluid,liquid CO2-bearing three-phase and daughter mineral-bearing multi-phase.The homogenization temperatures range from 382° to 122℃,falling into five clusters of 370° to 390°,300° to 360°,230° to 300°,210° to 290° and 120° to 200°,and the clusters of 300° to 360°,230° to 300° and 120° to 200° are three major mineralization stages,with fluid salinity peaks from 4.14% to 7.31%,2.07% to 7.31% and 0.53% to 3.90%,respectively.The ore-forming fluids are mainly type of NaCl-H2O with medium to high density (0.74-1.02 g/cm3),or CO2-bearing NaCl-H2O with medium to low density (0.18-0.79 g/cm3).The fluid salinity and density both show a decline tendency with decreasing temperature.According to the measurement and calculation of Hand O-isotopic compositions in the quartz of the quartz-sulfide veins,δDV-SMOW of the ore-forming fluid is from-84‰ to-54‰,and δ18OV-SMOW of that is from 6.75‰ to 9.21‰,indicating a magmatic fluid.The δ34SV-CDT of sulfides in the ores fall into two groups,one is from-4.4‰ to 2.2‰ with average of-1.42‰,and the other from 18.8‰ to 21.6‰ with average of 19.8‰.The S-isotopic data shows one peak at-4.4‰ to 2.2‰ (meaning-1.42‰) suggesting a simple magmatic sulfur source.The ore Pbisotopic ratios are 206pb/204pb from 17.817 to 17.983,207pb/204pb from 15.470 to 15.620 and 208pb/204pb from 38.072 to 38.481,indicating characteristics of mantle-derived lead.The data show that the major ore deposits in the orefield have a magmatic-hydrothermal genesis and that the SHRIMP zircon age of the granodiorite porphyry,closely related to the mineralization,is 151.2±4.2 Ma (MSWD =1.3),which can represent the formation ages of the ores and intrusion rocks.The study aids understanding of the ore-forming processes of the major metallic ore deposits in the orefield. 展开更多
关键词 ore geology geochemistry fluid inclusion SHRIMP zircon U-Pb dating ore genesis Carboniferous Jiangxi Province
下载PDF
Organic Gases in Fluid Inclusions of Ore Minerals and Their Constraints on Ore Genesis:A Case Study of the Changkeng Au-Ag Deposit,Guangdong,China 被引量:5
4
作者 DavidI.NORMAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第1期86-94,共9页
The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high v... The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, ninelight hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from theChangkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C_(1-4) and unsaturatedalkenes C_(2-4) and aromatic hydrocarbons, in which the alkanes are predominant, while the contentsof alkenes and aromatic hydrocarbons are very low. The sum alka/sum alke ratio of most samples ishigher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens insedimentary rocks caused by water-rock interactions at medium-low temperatures, and themetallogenic processes might have not been affected by magmatic activity. A thermodynamiccalculation shows that the light hydrocarbons have reached chemical equilibrium at temperatureshigher than 200 deg C, and they may have been generated in the deep part of sedimentary basins(e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of thebasin via a long distance. Most of the organic gases are generated by pyrolysis of the type IIkerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. Thecompositions and various parameters of light hydrocarbons in gold ores are quite similar to those insilver ores, suggesting that the gold and silver ores may have similar metallogenic processes.Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkengdeposit may be of a tectonic setting of continental rift. The results of this study support fromone aspect the authors' opinion that the Changkeng deposit is not formed by meteoric waterconvection, and that its genesis has a close relationship with the evolution of the Sanzhou basin,so it belongs to the sedimentary hot brine transformed deposit. 展开更多
关键词 ore mineral fluid inclusion organic gas Changkeng Au-Ag deposit
下载PDF
Fluid Inclusion Studies of Ore and Gangue Minerals from the Piaotang Tungsten Deposit, Southern Jiangxi Province, China 被引量:3
5
作者 WANG Xudong NI Pei +3 位作者 YUAN Shunda LIU Jiqiang LI Mingyong LIU Hongxin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第5期1647-1658,共12页
The Piaotang deposit is one of the largest vein-type W-polymetallic deposits in southern Jiangxi Province,South China.The coexistence of wolframite and cassiterite is an important feature of the deposit.Based on detai... The Piaotang deposit is one of the largest vein-type W-polymetallic deposits in southern Jiangxi Province,South China.The coexistence of wolframite and cassiterite is an important feature of the deposit.Based on detailed petrographic observations,microthermometry of fluid inclusions in wolframite,cassiterite and intergrown quartz was undertaken.The inclusions in wolframite were observed by infrared microscope,while those in cassiterite and quartz were observed in visible light.The fluid inclusions in wolframite can be divided into two types:aqueous inclusions with a large vapor-phase proportion and aqueous inclusions with a small vapor-phase ratio.The homogenization temperature(Th)of inclusions in wolframite with large vapor-phase ratios ranged from 280℃ to 390℃,with salinity ranging from 3.1 to 7.2 wt%NaCl eq.In contrast,the Th values of inclusions with small vapor-phase ratios ranged from 216℃ to 264℃,with salinity values ranging from 3.5 to 9.3 wt%NaCl eq.T_(h) values of primary inclusions in cassiterite ranged from 316℃ to 380℃,with salinity ranging from 5.4 to 9.3 wt%NaCl eq.T_(h) values for primary fluid inclusions in quartz ranged from 162℃ to 309℃,with salinity values ranging from 1.2 to 6.7 wt%NaCl eq.The results show that the formation conditions of wolframite,cassiterite and intergrown quartz are not uniform.The evolutionary processes of fluids related to these three kinds of minerals are also significantly different.Intergrown quartz cannot provide the depositional conditions of wolframite and cassiterite.The fluids related to tungsten mineralization for the NaCl-H_(2)O system had a medium-to-high temperature and low salinity,while the fluids related to tin mineralization for the NaCl-H_(2)O system had a high temperature and medium-to-low salinity.The results of this study suggest that fluid cooling is the main mechanism for the precipitation of tungsten and tin. 展开更多
关键词 fluid inclusion ore mineral gangue mineral infrared microscopic study quartz-vein-type-tungsten deposit Piaotang
下载PDF
Fluid inclusion and mineralization of Dafulou tin deposit in Dachang metal district, Guangxi, south China 被引量:3
6
作者 成永生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2726-2735,共10页
Based on the study of the petrology, mineralogy, structural geology and fluid inclusion of the Dafulou ore deposit in the Dachang ore field, the ore deposit geology and ore-forming fluids were analyzed. It shows that ... Based on the study of the petrology, mineralogy, structural geology and fluid inclusion of the Dafulou ore deposit in the Dachang ore field, the ore deposit geology and ore-forming fluids were analyzed. It shows that there are five main hydrothermal alteration types in the Dafulou ore district, namely the silicification, carbonate, sericite, pyrite and pyrrhotite. The mineralization types are composed of the stratiform type, interlayer type and stockwork type. The ore textures present as metasomatic texture, euhedral-subhedral granular texture and solid solution texture. The ore structure consists of massive structure, dissemination structure, fine veined structure, stockwork structure and brecciated structure. Four ore types are recognized, namely the disseminated ore, dense massive ore, veinlet ore and brecciated ore. Six types of fluid inclusions are determined, i.e. the single-phase gaseous fluid inclusions, single-phase salt solution fluid inclusions, two-phase vapour-rich fluid inclusions, two-phase liquid-rich fluid inclusions, three-phase CO2-rich fluid inclusions and solid(s)-bearing fluid inclusions, all of which form in three dominant temperature scopes, 120-150, 230-270, 350-460 °C. But, the majority of them form in the high temperature environment (350-460 °C). The tectonism plays an important role in the mineralization, which usually controls the scale, occurrence and shape of the Sn orebody. There are four types of hydrothermal fluid systems, H2O-NaCl-CaCl2, H2O-CaCl2, H2O-NaCl-MgCl2 and H2O-MgCl2. Similar to the other ore deposits in the Dachang ore field, there also exists the multiple source of ore-forming fluids. Overall, the Dafulou ore deposit should be the result of the crust-mantle interaction. 展开更多
关键词 fluid inclusion mineralIZATION Sn-polymetallic deposit Dafulou DACHANG
下载PDF
Genesis of the Zhaokalong Fe-Cu Polymetallic Deposit at Yushu, China: Evidence from Ore Geochemistry and Fluid Inclusions 被引量:15
7
作者 LI Huan XI Xiaoshuang +1 位作者 WU Chengming Koichiro WATANABE 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第2期486-500,共15页
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-typ... The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the j13CpDB ranges from -2.01 to 3.34 (%0) whereas the JISOsMow ranges from 6.96 to 18.95 (%0). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181~C, with salinity values of 1.06 to 8.04 wt% NaCI eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42- (F-, CI--H20 system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant. 展开更多
关键词 exhalative sedimentary deposit (SEDEX) fluid inclusions ore geochemistry Zhaokalong Sanjiang ore belt
下载PDF
Characteristics of Hydrocarbon Fluid Inclusions and Their Significance for Evolution of Petroleum Systems in the Dabashan Foreland,Central China 被引量:4
8
作者 LI Rongxi QIN Xiaoli +1 位作者 DONG Shuwen LIU Shuwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期861-875,共15页
Field investigation combined with detailed petrographic observation indicate that abundant oil,gas,and solid bitumen inclusions were entrapped in veins and cements of sedimentary rocks in the Dabashan foreland,which w... Field investigation combined with detailed petrographic observation indicate that abundant oil,gas,and solid bitumen inclusions were entrapped in veins and cements of sedimentary rocks in the Dabashan foreland,which were used to reconstruct the oil and gas migration history in the context of tectonic evolution.Three stages of veins were recognized and related to the collision between the North China block and the Yangtze block during the Indosinian orogeny from Late Triassic to Early Jurassic(Dl),the southwest thrusting of the Qinling orogenic belt towards the Sichuan basin during the Yanshanian orogeny from Late Jurassic to Early Cretaceous(D2),and extensional tectonics during Late Cretaceous to Paleogene(D3),respectively.The occurrences of hydrocarbon inclusions in these veins and their homogenization temperatures suggest that oil was generated in the early stage of tectonic evolution,and gas was generated later,whereas solid bitumen was the result of pyrolysis of previously accumulated hydrocarbons.Three stages of hydrocarbon fluid inclusions were also identified in cements of carbonates and sandstones of gas beds in the Dabashan foreland belt and the Dabashan foreland depression(northeastern Sichuan basin),which recorded oil/gas formation,migration,accumulation and destruction of paleo-reservoirs during the D2.Isotopic analysis of hydrocarbon fluid inclusions contained in vein minerals shows that δ^(13)C_1 of gas in fluid inclusions ranges from-17.0‰ to-30.4‰(PDB) and δD from-107.7‰ to-156.7‰(SMOW),which indicates that the gas captured in the veins was migrated natural gas which may be correlated with gas from the gas-fields in northern Sichuan basin.Organic geochemical comparison between bitumen and potential source rocks indicates that the Lower Cambrian black shale and the Lower Permian black limestone were the most possible source rocks of the bitumen.Combined with tectonic evolution history of the Dabashan foreland,the results of this study suggest that oil was generated from the Paleozoic source rocks in the Dabashan area under normal burial thermal conditions before Indosinian tectonics and accumulated to form paleo-reservoirs during Indosinian collision between the North China block and the Yangtz block.The paleo-reservoirs were destroyed during the Yanshanian tectonic movement when the Dabashan foreland was formed.At the same time,oil in the paleo-reservoirs in the Dabashan foreland depression was pyrolyzed to transform to dry gas and the residues became solid bitumen. 展开更多
关键词 Hydrocarbon fluid inclusion bitumen ForeLAND mineral vein paleo- reservoir Dabashanforeland
下载PDF
A Preliminary Study on Fluid Inclusions and Mineralization of Xitieshan Sedimentary-Exhalative (SEDEX) Lead-Zinc Deposit 被引量:4
9
作者 WANG Lijuan ZHU Xinyou +3 位作者 WANG Jingbin DENG Jiniu WANG Yuwang ZHU Heping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第4期838-844,共7页
The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming f... The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H20-NaCI-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The oreforming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep. 展开更多
关键词 sedimentary-exhalative system pipe facies unstratified ore bodies fluid inclusions the Xitieshan lead-zinc deposit
下载PDF
Rb-Sr Dating of Pyrite and Quartz Fluid Inclusions and Origin of Ore-forming Materials of the Jinshan Gold Deposit, Northeast Jiangxi Province, South China 被引量:2
10
作者 MAO Guangzhou HUA Renmin +1 位作者 LONG Guangming LU Huijuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第6期1658-1667,共10页
The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr... The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr age dating is applied to both gold-bearing pyrite in the alteration-type ore and fluid inclusion in the gold-bearing quartz vein to make clear the time of the gold mineralization of the Jinshan deposit.Analytical results of this study yielded that the age of the alteration-type ore bodies is about 838±110Ma,with an initial 87Sr/86Sr value of 0.7045±0.0020.However,the age of the gold-bearing quartz vein-type ore is about 379±49Ma,and the initial 87Sr/86Sr is 0.7138±0.0011.Based on the age data from this work and many previous studies,the authors consider that the Jinshan gold deposit is a product of multi-staged mineralization,which may include the Jinninian,Caledonian,Hercynian,and Yanshanian Periods.Among them,the Jinninian Period and the Hercynian Period might be the two most important ore-forming periods for Jinshan deposit.The Jinninian Period is the main stage for the formation of alteration-type ore bodies,while the Hercynian Period is the major time for ore bodies of gold-bearing quartz vein type.The initial values of the 87Sr/86Sr from this study,as well as the previous isotope and trace element studies,indicate that the ore-forming materials mainly derived from the metamorphic wall rocks,and the ore-forming fluids mainly originated from the deep metamorphic water. 展开更多
关键词 Gold deposit mineralization time quartz fluid inclusion PYRITE Rb-Sr dating Origin of the ore-forming materials Jinshan Jiangxi province
下载PDF
Genesis of the Jianbeigou Gold Deposit on the Southern Margin of the North China Craton: Insights from Fluid Inclusions, H-O-S Isotopes, and Pyrite in situ Trace Element Analyses
11
作者 LI Fengchun ZENG Qingdong +5 位作者 ZHU Rixiang CHU Shaoxiong XIE Wei YU Bing WU Jinjian LI Xinghui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期969-991,共23页
The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, inc... The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting. 展开更多
关键词 ore genesis H-O-S isotopes fluid inclusions in-situ trace element Jianbeigou gold deposit
下载PDF
Fluid Inclusion Geochemistry of Metallic Ore Deposits in the South- Central Sector of theDa Hinggan Mountains in China 被引量:3
12
作者 Sheng Jifu, Zhang Dequan and Li YanInstitute of Mineral Deposits, Chinese Academy of Geological Sciences, Beijing Jiang M inxi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1995年第3期289-302,共14页
Physicochemical parameters of mineralization such as temperature, pressure, salinity, density, composition and boiling of ore fluids as well as pH, Eh, fo2 and reducing parameter in theprocess of mineralization of maj... Physicochemical parameters of mineralization such as temperature, pressure, salinity, density, composition and boiling of ore fluids as well as pH, Eh, fo2 and reducing parameter in theprocess of mineralization of major ore deposits in the study district have been obtained by the authors through systematic observation and determination of characteristics and phase changes of fluid inclusions at different temperatures and analysis of gaseous and liquid phase compositions of the inclusions, thus providing a scientific basis for the division of mineralization-alteration stages, types of mineral deposits and minerogenetic series and the deepening of the knowledge about the ore-forming processes and mechanisms of mineral deposits. It is indicated that the deposits of the same type have similar fluid inclusion geochemical features and physicochemical parameters though they belong to different minerogenetic series, while the compositions of inclusions are not conditioned by deposit types but closely related to the minerogenetic series of deposits. 展开更多
关键词 south-central sector of the Da Hinggan Mountains metallic ore deposit fluid inclusion GEOCHEMISTRY
下载PDF
Fluid-melt Inclusions in Fluorite of the Huanggangliang Skarn Iron-Tin Deposit and Their Significance to Mineralization 被引量:12
13
作者 WANG Lijuan WANG Jingbin +1 位作者 WANG Yuwang MAO Qian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2001年第2期204-211,共8页
For the first time, fluid-melt inclusions are found in fluorite of the Huanggangliang skarn iron-tin deposit (HSID). The fluorite was formed in the main stage of mineralization, named the hydro-skarnization stage. The... For the first time, fluid-melt inclusions are found in fluorite of the Huanggangliang skarn iron-tin deposit (HSID). The fluorite was formed in the main stage of mineralization, named the hydro-skarnization stage. The inclusions contain various components such as Fe, Mg and Cr from deep sources. The melts of primary inclusions are mainly Ca- and F-rich and those of secondary inclusions tend to become Si-rich. During this evolution process, the melts and iron daughter minerals decreased and even vanished. These facts reveal that the evolution of the primary mineralizing fluids and the differentiation of the fluids and melts are the main factors leading to the deposition of Fe, Sn and other elements. This discovery confirms the magmatic genesis of the HSID and has filled in the gaps in the research of magmatogenic skarn deposits and furnished new methods for such research. Furthermore, it has enlarged the scope of the research on fluid inclusions. 展开更多
关键词 skarn deposit FLUORITE fluid-melt inclusion daughter mineral melt composition
下载PDF
Fluid Inclusion Investigations of the Masjed Daghi Copper-Gold Porphyry-Epithermal Mineralization, East Azerbaijan Province, NW Iran 被引量:2
14
作者 Solat Atalou Nima Nazafati +1 位作者 Mohammad Lotfi Mehraj Aghazadeh 《Open Journal of Geology》 2017年第8期1110-1127,共18页
The Masjed Daghi mineralization is located 30 km southeast of Jolfa city at the bank of Araxes River, northwest Iran. This area is situated in the Alborz-Azarbaijan structural zone of Iran. The most widespread rocks i... The Masjed Daghi mineralization is located 30 km southeast of Jolfa city at the bank of Araxes River, northwest Iran. This area is situated in the Alborz-Azarbaijan structural zone of Iran. The most widespread rocks in the mineralization area are andesite and trachyandesite, while there are rock units of latite tuff, andesitic agglomerate, and hornblende porphyry basalt in eastern hills and Eocene flysch in the southern part of the area. Several intrusive bodies are present in the study area, from which the dominant intrusive rock hosting the mineralization is diorite porphyry. The mineralized rock units of the area are cut by different diorite ad mafic dikes. The most prevalent texture of mineralization is dissemination, while open space filling textures including veins and veinlets, are common as well. Diverse types of alteration including potassic, phyllic, argillic, silicification, and a little of carbonatization were recognized in the field and microscopic observations as well as by XRD. In addition to thick silica veins and stockwork zones, some silica, barite, sulfide, and calcite veins and veinlets have occurred in the Masjed Daghi mineralization area. In this research, 26 doubly polished thin sections (wafers) were prepared and investigated. Four samples were taken from surface veins, while 22 samples were chosen from core samples (of 6 boreholes) of white and grey-white silica, and silica-barite veins. The fluid inclusion studies on 105 primary fluid inclusions indicated five phases for inclusions including: 1) liquid or gas, 2) liquid and gas, 3) liquid, gas, and solid, 4) liquid, gas, halite, and solid, and 5) liquid, gas, halite, and two types of solids. The data gained from fluid inclusions approved two mineralization fluids which caused porphyry and epithermal mineralizations. The porphyry fluid inclusions were homogenized in temperatures of 122°C to 550°C with a maximum of 700°C and average salinity of 55 wt% NaCl equivalent, while the epithermal inclusions indicated an average homogenization temperature of 186°C with an average salinity of 6.23 wt% NaCl equivalent. 展开更多
关键词 fluid inclusion PORPHYRY mineralIZATION EPITHERMAL Alteration DIORITE Masjed Daghi Siyah Roud
下载PDF
Daughter minerals in fluid inclusions of garnet and diopside from Tongguanshan Copper Deposit by SEM/EDS and LRM 被引量:2
15
作者 YulingXie JiuhuaXu +4 位作者 ZengqianHou ZhusenYang WenyiXu YifengMeng BaohuaWang 《Journal of University of Science and Technology Beijing》 CSCD 2004年第6期481-485,共5页
Tongguanshan copper deposit of Tongling large ore belt is one of the typicalskarn copper deposits. Based on careful observation under microscope many daughter mineralsincluding transparent ones and opaque ones have be... Tongguanshan copper deposit of Tongling large ore belt is one of the typicalskarn copper deposits. Based on careful observation under microscope many daughter mineralsincluding transparent ones and opaque ones have been distinguished in the fluid inclusions of garnetand diopside. The results of SEM/EDS (scanning electron microscope/energy dispersive spectrometer)and LRM (laser Raman microprobe) analysis show that these daughter minerals in garnet are sylvite,halite, sphalerite, chalcopyrite and carbonate. Sylvite daughter mineral is very popular in garnetand diopside. The existence of so much sylvite daughter mineral and other daughter minerals in thefluid inclusions indicates that the ore--forming fluid is of supper-high salinity and high potassiumconcentration. High potassium concentration in the fluid inclusions agrees with K-richmesotype--acid rock and K-silicate alteration that occurred widely in this area. The daughtermineral assemblage in garnet and diopside is similar to the mineral assemblage of ore-forming stagethat followed skarn stage. 展开更多
关键词 Tongguanshan copper deposits SKARN fluid inclusion daughter mineral potassium-rich fluid
下载PDF
Genetic Type and Metallogenic Mechanism of Bankuan Gold Deposit in Special Reference to the Studies of Fluid Inclusions and Isotopes in Minerals 被引量:4
16
作者 陈衍景 赵太平 +2 位作者 邓健 富士谷 金持跃 《Chinese Journal Of Geochemistry》 EI CAS 1994年第1期73-84,共12页
Auriferous quartz veins in the Bankuan gold deposit occur in the interlayer broken zone of thebasaI conglomerate of the Tietonggou Formation or at the unconfondty between the Tietonggou Formation and the crystalline b... Auriferous quartz veins in the Bankuan gold deposit occur in the interlayer broken zone of thebasaI conglomerate of the Tietonggou Formation or at the unconfondty between the Tietonggou Formation and the crystalline basement. The composition of fluid inclusions in the minerals indicates thatthe nature and composition of ore-forming hydrothermal solutions show a drashca1 change soon afterthe solutions reached the Tietonggou Formation from the crystailine basement, resulhng in go1d pre -cipitation. So the Bankuan gold deposit can be assigned to the conglomerate strata-bound-type depo-sits. 137 thermometric data are concentrated in the three ranges 400-340℃, 330-220℃ and180-160℃, represenhng three episodes of metallogenesis. Oxygen isotope studies demonstrate theevolution of ore-forming hydrothermal solutions from early metamorphic to late meteoric. Diversity oforoforming materials dominated by deep-source material is supportal by sulphur and lead isotope da-ta. From the above discussions it may be concluded that the deposit formed by metamorphism in-duced as a result of Mesozoic northward intracontinental subduction along the Machaoying fault. 展开更多
关键词 金矿床 流体包裹体 同位素 河南 地质构造
下载PDF
SRXRF Experiments and Analytical Methods of Mineral Individual Fluid Inclusions
17
作者 Wu Chunxue Huang Yuying +3 位作者 Li Hongkui Chen Chuanren He Wei Li Kuifa 《Petroleum Science》 SCIE CAS CSCD 2007年第3期63-67,共5页
This paper focuses on the micro-beam and trace element non-destructive experiment and analytical method of mineral fluid inclusions by synchrotron radiation X-ray fluorescence (SRXRF) microprobe at Beijing Synchrotr... This paper focuses on the micro-beam and trace element non-destructive experiment and analytical method of mineral fluid inclusions by synchrotron radiation X-ray fluorescence (SRXRF) microprobe at Beijing Synchrotron Radiation Facility (BSRF). The experimental instrument, measurement process and calculating method are introduced. A set of oil- and gas-containing typical mineral fluid inclusions taken from the Tazhong and Lunnan oilfields in the Tarim Basin were analyzed non-destructively. The trace element contents in the fluid inclusions may provide guidance for oil and gas exploration and development. 展开更多
关键词 Synchrotron radiation X-ray fluorescence (SRXRF) mineral fluid inclusion experiment and analysis
下载PDF
Fluid Inclusions and Daughter Minerals of Taibai Gold Deposit, ShaanXi Province, China
18
作者 YulingXie, Jiuhua Xu, Dayi Qian, Jianping Li Resources Engeneering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第1期6-9,共4页
A discovery of daughter minerals in fluid inclusions of Taibai gold deposit, Shaanxi province has been focused on, which is a unique breccia-cemented gold-bearing system. The breccia zone strikes NWW-SEE, occurring in... A discovery of daughter minerals in fluid inclusions of Taibai gold deposit, Shaanxi province has been focused on, which is a unique breccia-cemented gold-bearing system. The breccia zone strikes NWW-SEE, occurring in Devonian strata of Southern Qinling Mountains. The cement is mainly composed of ankerite, pyrite, calcite and quartz, which may be divided into four main tectonic-mineralizing stages. Gold mainly occurs in pyrite and ankerite of stage II and IV. It is found that three types of fluid inclusions can be distinguished: (1) aqueous inclusions (type B); (2) CO2-rich inclusions (type C); (3) daughter minerals-containing inclusions (type A). LRM. (Laser Raman Micro-probe) analyses shows that the content of CO2 occupies 54.4%-70.7% (mole fraction, so as the follows) in vapor phases of different type fluid inclusions. CH4 (5.2%-7.3%) and H2S (6.0%-12.7%) exist in both vapor and liquid phases. Many daughter minerals in fluid inclusions of ankerite and quartz have been found. Several kinds of daughter minerals, including ankerite, pyrite, arsenopyrite and halite, were determined by using SEM (scanning electron microscope)/EDS (energy dispersive spectrometer) technique. EPMA (electron probe micro-analysis) technique was also applied to study the daughter minerals exposed to the surface of polished thin sections. 展开更多
关键词 daughter minerals fluid inclusions gold deposit BRECCIA
下载PDF
Ore genesis of Badi copper deposit, northwest Yunnan Province, China: evidence from geology, fluid inclusions, and sulfur, hydrogen and oxygen isotopes
19
作者 Hejun Yin Jianguo Huang Tao Ren 《Acta Geochimica》 EI CAS CSCD 2018年第4期559-570,共12页
The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and dau... The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit. 展开更多
关键词 Badi copper deposit fluid inclusion Sulfurisotope Hydrogen and oxygen isotope ore genesis
下载PDF
Mineralization of the Liwu large-scale stratiform copper deposits in Sichuan Province, China: Constraints from fluid inclusions
20
作者 Hua-yun Yuan Qing Zhou +6 位作者 Yuan-bao Song Wei Zhang Hui-hua Zhang Tong-zhu Li Tao Yin Chang-nan Wang Gao-lin Tang 《China Geology》 CAS CSCD 2023年第2期252-268,共17页
The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristi... The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit. 展开更多
关键词 Stratiform copper deposit mineralIZATION fluid inclusion H-O isotopes Hydrothermal deposit Dome structure Middle Proterozoic metamorphic rock mineral exploration engineering Sichuan Province
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部