Improvement of coking properties of sub-bituminous coal (A) and bituminous coal (B) was done using blended organic solvents, namely, n-methyl-2-pyrrolidinone (NMP) and ethylenediamine (EDA). Various solvent bl...Improvement of coking properties of sub-bituminous coal (A) and bituminous coal (B) was done using blended organic solvents, namely, n-methyl-2-pyrrolidinone (NMP) and ethylenediamine (EDA). Various solvent blends were employed for the coal extraction under the total reflux condition. A low-cost ceramic membrane was fabricated using industrial waste iron ore slime of M/s TATA steel R&D, Jamshedpur (India) to separate out the dissolved coking fraction from the solvent-coal mixture. Membrane separations were carried out in a batch cell, and around 75 % recovered NMP was reused. The fractionated coal properties were determined using proximate and ultimate analyses. In the case of bituminous coal, the ash and sulfur contents were decreased by 99.3 % and 79.2 %, respectively, whereas, the carbon content was increased by 23.9 % in the separated coal fraction. Three different cleaning agents, namely deionized water, sodium dodecyl sulphate and NMP were used to regain the original membrane permeability for the reusing.展开更多
文摘Improvement of coking properties of sub-bituminous coal (A) and bituminous coal (B) was done using blended organic solvents, namely, n-methyl-2-pyrrolidinone (NMP) and ethylenediamine (EDA). Various solvent blends were employed for the coal extraction under the total reflux condition. A low-cost ceramic membrane was fabricated using industrial waste iron ore slime of M/s TATA steel R&D, Jamshedpur (India) to separate out the dissolved coking fraction from the solvent-coal mixture. Membrane separations were carried out in a batch cell, and around 75 % recovered NMP was reused. The fractionated coal properties were determined using proximate and ultimate analyses. In the case of bituminous coal, the ash and sulfur contents were decreased by 99.3 % and 79.2 %, respectively, whereas, the carbon content was increased by 23.9 % in the separated coal fraction. Three different cleaning agents, namely deionized water, sodium dodecyl sulphate and NMP were used to regain the original membrane permeability for the reusing.