BACKGROUND The controlling nutritional status(CONUT)score effectively reflects a patient’s nutritional status,which is closely related to cancer prognosis.This study invest-igated the relationship between the CONUT s...BACKGROUND The controlling nutritional status(CONUT)score effectively reflects a patient’s nutritional status,which is closely related to cancer prognosis.This study invest-igated the relationship between the CONUT score and prognosis after radical surgery for colorectal cancer,and compared the predictive ability of the CONUT score with other indexes.AIM To analyze the predictive performance of the CONUT score for the survival rate of colorectal cancer patients who underwent potentially curative resection.METHODS This retrospective analysis included 217 patients with newly diagnosed colorectal.The CONUT score was calculated based on the serum albumin level,total lymphocyte count,and total cholesterol level.The cutoff value of the CONUT score for predicting prognosis was 4 according to the Youden Index by the receiver operating characteristic curve.The associations between the CONUT score and the prognosis were performed using Kaplan-Meier curves and Cox regression analysis.RESULTS Using the cutoff value of the CONUT score,patients were stratified into CONUT low(n=189)and CONUT high groups(n=28).The CONUT high group had worse overall survival(OS)(P=0.013)and relapse-free survival(RFS)(P=0.015).The predictive performance of CONUT was superior to the modified Glasgow prognostic score,the prognostic nutritional index,and the neutrophil-to-lymphocyte ratio.Meanwhile,the predictive performances of CONUT+tumor node metastasis(TNM)stage for 3-year OS[area under the receiver operating characteristics curve(AUC)=0.803]and 3-year RFS(AUC=0.752)were no less than skeletal muscle mass index(SMI)+TNM stage.The CONUT score was negatively correlated with SMI(P<0.01).CONCLUSION As a nutritional indicator,the CONUT score could predict long-term outcomes after radical surgery for colorectal cancer,and its predictive ability was superior to other indexes.The correlation between the CONUT score and skeletal muscle may be one of the factors that play a predictive role.展开更多
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque...Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.展开更多
To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling techno...To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.展开更多
How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation...How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.展开更多
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos...Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.展开更多
Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fra...Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.展开更多
We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanorib...We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.展开更多
Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways....Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.展开更多
Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the c...Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.展开更多
The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not w...The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.展开更多
Randomized controlled trials(RCTs)have long been recognized as the gold standard for establishing causal relationships in clinical research.Despite that,various limitations of RCTs prevent its widespread implementatio...Randomized controlled trials(RCTs)have long been recognized as the gold standard for establishing causal relationships in clinical research.Despite that,various limitations of RCTs prevent its widespread implementation,ranging from the ethicality of withholding potentially-lifesaving treatment from a group to relatively poor external validity due to stringent inclusion criteria,amongst others.However,with the introduction of propensity score matching(PSM)as a retrospective statistical tool,new frontiers in establishing causation in clinical research were opened up.PSM predicts treatment effects using observational data from existing sources such as registries or electronic health records,to create a matched sample of participants who received or did not receive the intervention based on their propensity scores,which takes into account characteristics such as age,gender and comorbidities.Given its retrospective nature and its use of observational data from existing sources,PSM circumvents the aforementioned ethical issues faced by RCTs.Majority of RCTs exclude elderly,pregnant women and young children;thus,evidence of therapy efficacy is rarely proven by robust clinical research for this population.On the other hand,by matching study patient characteristics to that of the population of interest,including the elderly,pregnant women and young children,PSM allows for generalization of results to the wider population and hence greatly increases the external validity.Instead of replacing RCTs with PSM,the synergistic integration of PSM into RCTs stands to provide better research outcomes with both methods complementing each other.For example,in an RCT investigating the impact of mannitol on outcomes among participants of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial,the baseline characteristics of comorbidities and current medications between treatment and control arms were significantly different despite the randomization protocol.Therefore,PSM was incorporated in its analysis to create samples from the treatment and control arms that were matched in terms of these baseline characteristics,thus providing a fairer comparison for the impact of mannitol.This literature review reports the applications,advantages,and considerations of using PSM with RCTs,illustrating its utility in refining randomization,improving external validity,and accounting for non-compliance to protocol.Future research should consider integrating the use of PSM in RCTs to better generalize outcomes to target populations for clinical practice and thereby benefit a wider range of patients,while maintaining the robustness of randomization offered by RCTs.展开更多
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
Internet gaming disorder(IGD)among junior high school students is an increasingly prominent mental health concern.It is important to look for influences behind internet gaming disorder tendency(IGDT)in the junior high...Internet gaming disorder(IGD)among junior high school students is an increasingly prominent mental health concern.It is important to look for influences behind internet gaming disorder tendency(IGDT)in the junior high school student population.The present study aimed to reveal the explanatory mechanisms underlying the association between parental psychological control(PPC)and internet gaming disorder tendency among junior high school students by testing the mediating role of core self-evaluation(CSE)and the moderating role of intentional self-regulation(ISR).Participants in present study were 735 Chinese junior high school students who completed offline self-report questionnaires on parental psychological control,core self-evaluation,intentional self-regulation,and Internet gaming disorder tendency.Analyses were conducted via mediation and moderated mediation.The results showed that:(1)Parental psychological control was positively related to junior high school students’Internet gaming disorder tendency.Core self-evaluation,and intentional self-regulation were negatively related to junior high school students’Internet gaming disorder tendency,respectively.(2)Core self-evaluation partially mediated the relationship between parental psychological control and junior high school students’Internet gaming disorder tendency.(3)Intentional self-regulation moderated the association between parental psychological control and Internet gaming disorder tendency,as well as the relationships between parental psychological control and core self-evaluation and core self-evaluation and Internet gaming disorder tendency in the mediated model.Based on these findings,we believe that there is a need to weaken parental psychological control,strengthen junior high school students’core self-evaluation and intentional self-regulation,and to recognize the important role of parents as well as their children’s personal positive traits in the healthy development of junior high school students.展开更多
Objective:To explore the effect of Jianpi Wenshen Granules on the Controlling Nutritional Status(CONUT)score in elderly patients undergoing maintenance hemodialysis.Methods:Seventy elderly outpatients undergoing maint...Objective:To explore the effect of Jianpi Wenshen Granules on the Controlling Nutritional Status(CONUT)score in elderly patients undergoing maintenance hemodialysis.Methods:Seventy elderly outpatients undergoing maintenance hemodialysis from January 2023 to January 2024 at the Blood Purification Centers of Taizhou Traditional Chinese Medicine Hospital and Taizhou Second People’s Hospital were selected as the study subjects.The patients were randomly divided into two groups:the study group and the control group,with 35 patients in each group.Both groups received maintenance hemodialysis,while the control group received only conventional Western medicine treatment,and the study group was additionally treated with Jianpi Wenshen Granules.The changes in biochemical and inflammatory markers before and after treatment were compared between the two groups.The nutritional status of the patients was assessed using the Controlling Nutritional Status(CONUT)score,and detailed statistics were gathered on anemia and albumin levels in both groups.Results:After treatment,the CONUT score in the study group significantly decreased compared to the control group,showing a significant correlation(P<0.05).Albumin and hemoglobin levels significantly increased,with a notable difference(P<0.05).There were no significant differences in alanine aminotransferase and aspartate aminotransferase levels between the two groups before and after treatment(P>0.05).Conclusion:In elderly patients undergoing maintenance hemodialysis,Jianpi Wenshen Granules improve the CONUT score and enhance nutritional status,demonstrating potential for clinical application and promotion.展开更多
The liver is in charge of distributing and regulating the movement of qi throughout the whole body,coordinating the transportation and transformation of the internal organs in the middle part of the body,promoting the...The liver is in charge of distributing and regulating the movement of qi throughout the whole body,coordinating the transportation and transformation of the internal organs in the middle part of the body,promoting the biochemical circulation of qi,blood,and body fluids,and regulating emotions.Liver dysfunction can disrupt the transportation and transformation of qi,blood,and body fluids,causing phlegm turbidity,blood stasis,and other unwanted symptoms.Poor regulation of emotion further aggravates the accumulation of pathological substances,resulting in the obstruction of heart vessels,and ultimately coronary heart disease(CHD).Through regulating lipid metabolism,inflammatory reaction,vasoactive substances,platelet function,neuroendocrine,and other factors,liver controlling dispersing qi plays a comprehensive role in the prognosis of atherosclerosis,the primary cause of CHD.Therefore,it is recommended to treat CHD from the perspective of liver-controlling dispersion.展开更多
Rare metals including Lithium(Li),Beryllium(Be),Rubidium(Rb),Cesium(Cs),Zirconium(Zr),Hafnium(Hf),Niobium(Nb),Tantalum(Ta),Tungsten(W)and Tin(Sn)are important critical mineral resources.In China,rare metal mineral dep...Rare metals including Lithium(Li),Beryllium(Be),Rubidium(Rb),Cesium(Cs),Zirconium(Zr),Hafnium(Hf),Niobium(Nb),Tantalum(Ta),Tungsten(W)and Tin(Sn)are important critical mineral resources.In China,rare metal mineral deposits are spatially distributed mainly in the Altay and Southern Great Xingán Range regions in the Central Asian orogenic belt;in the Middle Qilian,South Qinling and East Qinling mountains regions in the Qilian-Qinling-Dabie orogenic belt;in the Western Sichuan and Bailongshan-Dahongliutan regions in the Kunlun-Songpan-Garze orogenic belt,and in the Northeastern Jiangxi,Northwestern Jiangxi,and Southern Hunan regions in South China.Major ore-forming epochs include Indosinian(mostly 200-240 Ma,in particular in western China)and the Yanshanian(mostly 120-160 Ma,in particular in South China).In addition,Bayan Obo,Inner Mongolia,northeastern China,with a complex formation history,hosts the largest REE and Nb deposits in China.There are six major rare metal mineral deposit types in China:Highly fractionated granite;Pegmatite;Alkaline granite;Carbonatite and alkaline rock;Volcanic;and Hydrothermal types.Two further types,namely the Leptynite type and Breccia pipe type,have recently been discovered in China,and are represented by the Yushishan Nb-Ta-(Zr-Hf-REE)and the Weilasituo Li-Rb-Sn-W-Zn-Pb deposits.Several most important controlling factors for rare metal mineral deposits are discussed,including geochemical behaviors and sources of the rare metals,highly evolved magmatic fractionation,and structural controls such as the metamorphic core complex setting,with a revised conceptual model for the latter.展开更多
With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machine...With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.展开更多
Conventional Al-air battery has many disadvantages for miniwatt applications,such as the complex water management,bulky electrolyte storage and potential leakage hazard.Moreover,the self-corrosion of Al anode continue...Conventional Al-air battery has many disadvantages for miniwatt applications,such as the complex water management,bulky electrolyte storage and potential leakage hazard.Moreover,the self-corrosion of Al anode continues even when the electrolyte flow is stopped,leading to great Al waste.To tackle these issues,an innovative cotton-based aluminum-air battery is developed in this study.Instead of flowing alkaline solution,cotton substrate pre-deposited with solid alkaline is used,together with a small water reservoir to continuously wet the cotton and dissolve the alkaline in-situ.In this manner,the battery can be mechanically recharged by replacing the cotton substrate and refilling the water reservoir,while the thick aluminum anode can be reused for tens of times until complete consumption.The cotton substrate shows excellent ability for the storage and transportation of alkaline electrolyte,leading to a high peak power density of 73 mW cm^(-2) and a high specific energy of 930 mW h g^(-1).Moreover,the battery discharge capacity is found to be linear to the loading of pre-deposited alkaline,so that it can be precisely controlled according to the mission profile to avoid Al waste.Finally,a two-cell battery pack with common water reservoir is developed,which can provide a voltage of 2.7 V and a power output of 223.8 mW.With further scaling-up and stacking,this cotton-based Al-air battery system with low cost and high energy density is very promising for recharging miniwatt electronics in the outdoor environment.展开更多
The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery...The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery raising methods like tandem long-mat seedlings(TLMS)are necessary for the resource-efficient cultivation of rice.In the present study,a controlled-release fertilizer(CRF)-polymer-coated compound fertilizer with 3 months release period(PCCF-3M)was applied as seedling fertilizer(SF),and five different dosages of SF(SF-0,SF-10,SF-20,SF-30,and SF-40)were compared with an organic substrate as the control(CK).Among all SF treatments,the best results were obtained with the application of 20 g/tray of SF(SF-20),as the seedling quality and machine transplanting quality were comparable to those of CK.In contrast,the lower dosages(SF-0 and SF-10)resulted in low nitrogen content and reduced shoot growth,while the higher dosages(SF-30 and SF-40)resulted in toxicity(increased malondialdehyde accumulation)and inhibited the root growth.Similarly,SF-20 increased panicle number(5.6-7.0%)and yield(4.3-5.3%)compared with CK,which might be related to the remaining SF entangled in the roots supporting the tiller growth of rice seedlings in the field.Moreover,SF-20 reduced the seedling block weight(53.1%)and cost of seedling production(23.5%)but increased the gross margin,indicating that it was easy to handle and economical.Taken together,our results indicate that SF-20 is a cost-effective way to promote the growth and transplanting efficiency of rice seedlings.To our knowledge,this study is the first to determine the optimum dosage of CRF for the soil-less production of rice seedlings.展开更多
The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as compl...The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils.展开更多
基金Clinical Trials from the Affiliated Drum Tower Hospital,Medical School of Nanjing University,2022-LCYJ-PY-17CIMF-CSPEN Project,Z-2017-24-2211Project of Chinese Hospital Reform and Development Institute,Nanjing University and Aid project of Nanjing Drum Tower Hospital Health,Education&Research Foundation,NDYG2022090。
文摘BACKGROUND The controlling nutritional status(CONUT)score effectively reflects a patient’s nutritional status,which is closely related to cancer prognosis.This study invest-igated the relationship between the CONUT score and prognosis after radical surgery for colorectal cancer,and compared the predictive ability of the CONUT score with other indexes.AIM To analyze the predictive performance of the CONUT score for the survival rate of colorectal cancer patients who underwent potentially curative resection.METHODS This retrospective analysis included 217 patients with newly diagnosed colorectal.The CONUT score was calculated based on the serum albumin level,total lymphocyte count,and total cholesterol level.The cutoff value of the CONUT score for predicting prognosis was 4 according to the Youden Index by the receiver operating characteristic curve.The associations between the CONUT score and the prognosis were performed using Kaplan-Meier curves and Cox regression analysis.RESULTS Using the cutoff value of the CONUT score,patients were stratified into CONUT low(n=189)and CONUT high groups(n=28).The CONUT high group had worse overall survival(OS)(P=0.013)and relapse-free survival(RFS)(P=0.015).The predictive performance of CONUT was superior to the modified Glasgow prognostic score,the prognostic nutritional index,and the neutrophil-to-lymphocyte ratio.Meanwhile,the predictive performances of CONUT+tumor node metastasis(TNM)stage for 3-year OS[area under the receiver operating characteristics curve(AUC)=0.803]and 3-year RFS(AUC=0.752)were no less than skeletal muscle mass index(SMI)+TNM stage.The CONUT score was negatively correlated with SMI(P<0.01).CONCLUSION As a nutritional indicator,the CONUT score could predict long-term outcomes after radical surgery for colorectal cancer,and its predictive ability was superior to other indexes.The correlation between the CONUT score and skeletal muscle may be one of the factors that play a predictive role.
基金the support of the National Natural Science Foundation of China(52077061)Fundamental Research Funds for the Central Universities(B240201121).
文摘Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.
基金supported by the National Natural Science Foundation of China(Grants 52304001,52227804)State Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum,Beijing(No.PRE/open-2310)。
文摘To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12174041)China Postdoctoral Science Foundation (CPSF)(Grant No. 2022M723118)the seed grants from the Wenzhou Institute,University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002)。
文摘How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.
基金Funded by the National Natural Science Foundation of China(No.51678254)。
文摘Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.
基金financially supported by the CNPC Prospective Basic Science and Technology Special Project(2023ZZ08)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103)。
文摘Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174077 and 12174051)the Science Foundation of GuangDong Province (Grant No.2021A1515012363)GuangDong Basic and Applied Basic Research Foundation (Grant No.2022A1515110011)。
文摘We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.
基金The National Key Research and Development Program of Ministry of Science and Technology(No.2022YFA1504602)Natural Science Foundation of Jiangsu Province(No.BK20211094)National Natural Science Foundation of China(No.22302214,21972152,U22B20137).
文摘Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.
基金Supported by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (2019BT02H594)Sanya Technology Innovation Special Project (2022KJCX08)。
文摘Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42030804 and 42330811)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,China University of Geosciences(Beijing)(Fundamental Research Funds for the Central UniversitiesGrant No.2652023001)。
文摘The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.
文摘Randomized controlled trials(RCTs)have long been recognized as the gold standard for establishing causal relationships in clinical research.Despite that,various limitations of RCTs prevent its widespread implementation,ranging from the ethicality of withholding potentially-lifesaving treatment from a group to relatively poor external validity due to stringent inclusion criteria,amongst others.However,with the introduction of propensity score matching(PSM)as a retrospective statistical tool,new frontiers in establishing causation in clinical research were opened up.PSM predicts treatment effects using observational data from existing sources such as registries or electronic health records,to create a matched sample of participants who received or did not receive the intervention based on their propensity scores,which takes into account characteristics such as age,gender and comorbidities.Given its retrospective nature and its use of observational data from existing sources,PSM circumvents the aforementioned ethical issues faced by RCTs.Majority of RCTs exclude elderly,pregnant women and young children;thus,evidence of therapy efficacy is rarely proven by robust clinical research for this population.On the other hand,by matching study patient characteristics to that of the population of interest,including the elderly,pregnant women and young children,PSM allows for generalization of results to the wider population and hence greatly increases the external validity.Instead of replacing RCTs with PSM,the synergistic integration of PSM into RCTs stands to provide better research outcomes with both methods complementing each other.For example,in an RCT investigating the impact of mannitol on outcomes among participants of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial,the baseline characteristics of comorbidities and current medications between treatment and control arms were significantly different despite the randomization protocol.Therefore,PSM was incorporated in its analysis to create samples from the treatment and control arms that were matched in terms of these baseline characteristics,thus providing a fairer comparison for the impact of mannitol.This literature review reports the applications,advantages,and considerations of using PSM with RCTs,illustrating its utility in refining randomization,improving external validity,and accounting for non-compliance to protocol.Future research should consider integrating the use of PSM in RCTs to better generalize outcomes to target populations for clinical practice and thereby benefit a wider range of patients,while maintaining the robustness of randomization offered by RCTs.
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
基金supported by the National Social Science Foundation of China(20BSH131).
文摘Internet gaming disorder(IGD)among junior high school students is an increasingly prominent mental health concern.It is important to look for influences behind internet gaming disorder tendency(IGDT)in the junior high school student population.The present study aimed to reveal the explanatory mechanisms underlying the association between parental psychological control(PPC)and internet gaming disorder tendency among junior high school students by testing the mediating role of core self-evaluation(CSE)and the moderating role of intentional self-regulation(ISR).Participants in present study were 735 Chinese junior high school students who completed offline self-report questionnaires on parental psychological control,core self-evaluation,intentional self-regulation,and Internet gaming disorder tendency.Analyses were conducted via mediation and moderated mediation.The results showed that:(1)Parental psychological control was positively related to junior high school students’Internet gaming disorder tendency.Core self-evaluation,and intentional self-regulation were negatively related to junior high school students’Internet gaming disorder tendency,respectively.(2)Core self-evaluation partially mediated the relationship between parental psychological control and junior high school students’Internet gaming disorder tendency.(3)Intentional self-regulation moderated the association between parental psychological control and Internet gaming disorder tendency,as well as the relationships between parental psychological control and core self-evaluation and core self-evaluation and Internet gaming disorder tendency in the mediated model.Based on these findings,we believe that there is a need to weaken parental psychological control,strengthen junior high school students’core self-evaluation and intentional self-regulation,and to recognize the important role of parents as well as their children’s personal positive traits in the healthy development of junior high school students.
基金Taizhou Traditional Chinese Medicine Science and Technology Development Project(Project No.TZ202207)。
文摘Objective:To explore the effect of Jianpi Wenshen Granules on the Controlling Nutritional Status(CONUT)score in elderly patients undergoing maintenance hemodialysis.Methods:Seventy elderly outpatients undergoing maintenance hemodialysis from January 2023 to January 2024 at the Blood Purification Centers of Taizhou Traditional Chinese Medicine Hospital and Taizhou Second People’s Hospital were selected as the study subjects.The patients were randomly divided into two groups:the study group and the control group,with 35 patients in each group.Both groups received maintenance hemodialysis,while the control group received only conventional Western medicine treatment,and the study group was additionally treated with Jianpi Wenshen Granules.The changes in biochemical and inflammatory markers before and after treatment were compared between the two groups.The nutritional status of the patients was assessed using the Controlling Nutritional Status(CONUT)score,and detailed statistics were gathered on anemia and albumin levels in both groups.Results:After treatment,the CONUT score in the study group significantly decreased compared to the control group,showing a significant correlation(P<0.05).Albumin and hemoglobin levels significantly increased,with a notable difference(P<0.05).There were no significant differences in alanine aminotransferase and aspartate aminotransferase levels between the two groups before and after treatment(P>0.05).Conclusion:In elderly patients undergoing maintenance hemodialysis,Jianpi Wenshen Granules improve the CONUT score and enhance nutritional status,demonstrating potential for clinical application and promotion.
文摘The liver is in charge of distributing and regulating the movement of qi throughout the whole body,coordinating the transportation and transformation of the internal organs in the middle part of the body,promoting the biochemical circulation of qi,blood,and body fluids,and regulating emotions.Liver dysfunction can disrupt the transportation and transformation of qi,blood,and body fluids,causing phlegm turbidity,blood stasis,and other unwanted symptoms.Poor regulation of emotion further aggravates the accumulation of pathological substances,resulting in the obstruction of heart vessels,and ultimately coronary heart disease(CHD).Through regulating lipid metabolism,inflammatory reaction,vasoactive substances,platelet function,neuroendocrine,and other factors,liver controlling dispersing qi plays a comprehensive role in the prognosis of atherosclerosis,the primary cause of CHD.Therefore,it is recommended to treat CHD from the perspective of liver-controlling dispersion.
基金financially supported by the National Key R&D Program of China(grant no.2017YFC0602405)the National Natural Science Foundation of China(grant no.42030811)。
文摘Rare metals including Lithium(Li),Beryllium(Be),Rubidium(Rb),Cesium(Cs),Zirconium(Zr),Hafnium(Hf),Niobium(Nb),Tantalum(Ta),Tungsten(W)and Tin(Sn)are important critical mineral resources.In China,rare metal mineral deposits are spatially distributed mainly in the Altay and Southern Great Xingán Range regions in the Central Asian orogenic belt;in the Middle Qilian,South Qinling and East Qinling mountains regions in the Qilian-Qinling-Dabie orogenic belt;in the Western Sichuan and Bailongshan-Dahongliutan regions in the Kunlun-Songpan-Garze orogenic belt,and in the Northeastern Jiangxi,Northwestern Jiangxi,and Southern Hunan regions in South China.Major ore-forming epochs include Indosinian(mostly 200-240 Ma,in particular in western China)and the Yanshanian(mostly 120-160 Ma,in particular in South China).In addition,Bayan Obo,Inner Mongolia,northeastern China,with a complex formation history,hosts the largest REE and Nb deposits in China.There are six major rare metal mineral deposit types in China:Highly fractionated granite;Pegmatite;Alkaline granite;Carbonatite and alkaline rock;Volcanic;and Hydrothermal types.Two further types,namely the Leptynite type and Breccia pipe type,have recently been discovered in China,and are represented by the Yushishan Nb-Ta-(Zr-Hf-REE)and the Weilasituo Li-Rb-Sn-W-Zn-Pb deposits.Several most important controlling factors for rare metal mineral deposits are discussed,including geochemical behaviors and sources of the rare metals,highly evolved magmatic fractionation,and structural controls such as the metamorphic core complex setting,with a revised conceptual model for the latter.
基金This research was supported financially by the China Postdoctoral Science Foundation,the National Natural Science Foundation of China(Grant No.51705132)the Young Backbone Teacher Training Program in Henan University of Technology,the Education Department of Henan Province Natural Science Project(Grant No.21A460006)the Natural Science Project of Henan Provincial Department of Science and Technology(Grant No.222102220088).
文摘With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.
基金the SZSTI of Shenzhen Municipal Government (JCYJ20170818141758464)the CRCG grant of the University of Hong Kong (201910160008)for providing funding support to the project.
文摘Conventional Al-air battery has many disadvantages for miniwatt applications,such as the complex water management,bulky electrolyte storage and potential leakage hazard.Moreover,the self-corrosion of Al anode continues even when the electrolyte flow is stopped,leading to great Al waste.To tackle these issues,an innovative cotton-based aluminum-air battery is developed in this study.Instead of flowing alkaline solution,cotton substrate pre-deposited with solid alkaline is used,together with a small water reservoir to continuously wet the cotton and dissolve the alkaline in-situ.In this manner,the battery can be mechanically recharged by replacing the cotton substrate and refilling the water reservoir,while the thick aluminum anode can be reused for tens of times until complete consumption.The cotton substrate shows excellent ability for the storage and transportation of alkaline electrolyte,leading to a high peak power density of 73 mW cm^(-2) and a high specific energy of 930 mW h g^(-1).Moreover,the battery discharge capacity is found to be linear to the loading of pre-deposited alkaline,so that it can be precisely controlled according to the mission profile to avoid Al waste.Finally,a two-cell battery pack with common water reservoir is developed,which can provide a voltage of 2.7 V and a power output of 223.8 mW.With further scaling-up and stacking,this cotton-based Al-air battery system with low cost and high energy density is very promising for recharging miniwatt electronics in the outdoor environment.
基金This work was funded by the National Natural Science Foundation of China(31871573)the Key Research and Development Program of Jiangsu Province,China(BE2017369)the Jiangsu Agriculture Science and Technology Innovation Fund,China(JASTIF)(CX(18)1002).
文摘The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery raising methods like tandem long-mat seedlings(TLMS)are necessary for the resource-efficient cultivation of rice.In the present study,a controlled-release fertilizer(CRF)-polymer-coated compound fertilizer with 3 months release period(PCCF-3M)was applied as seedling fertilizer(SF),and five different dosages of SF(SF-0,SF-10,SF-20,SF-30,and SF-40)were compared with an organic substrate as the control(CK).Among all SF treatments,the best results were obtained with the application of 20 g/tray of SF(SF-20),as the seedling quality and machine transplanting quality were comparable to those of CK.In contrast,the lower dosages(SF-0 and SF-10)resulted in low nitrogen content and reduced shoot growth,while the higher dosages(SF-30 and SF-40)resulted in toxicity(increased malondialdehyde accumulation)and inhibited the root growth.Similarly,SF-20 increased panicle number(5.6-7.0%)and yield(4.3-5.3%)compared with CK,which might be related to the remaining SF entangled in the roots supporting the tiller growth of rice seedlings in the field.Moreover,SF-20 reduced the seedling block weight(53.1%)and cost of seedling production(23.5%)but increased the gross margin,indicating that it was easy to handle and economical.Taken together,our results indicate that SF-20 is a cost-effective way to promote the growth and transplanting efficiency of rice seedlings.To our knowledge,this study is the first to determine the optimum dosage of CRF for the soil-less production of rice seedlings.
基金This study is supported by the National Natural Science Foundation of China(Grants 41730424,41961144023 and 42002162)。
文摘The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils.