The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks,...The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud展开更多
Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic b...Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the HP metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The two- mica albite gneisses have 206 Pb/ 204 Pb=17.657-18.168, 207 Pb/ 204 Pb=15.318-15.573, 208 Pb/ 204 Pb=38.315-38.990, and the eclogites have 206 Pb/ 204 Pb=17.599-18.310, 207 Pb/ 204 Pb=15.465- 15.615 , 208 Pb/ 204 Pb=37.968-39.143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have 206 Pb/ 204 Pb=17.128-17.434, 207 Pb/ 204 Pb=15.313-15.422 and 208 Pb/ 204 Pb=37.631-38.122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.展开更多
The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor...The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor amphibolite. These rocks underwent amphibolite-facies metamorphism. The meta-argillo-arenaceous rocks show large variations in major element composition, but have similar REE patterns and trace element composition, incompatible element and LIE enrichments [high Th/Sc ({0.57}-{3.59}), La/Sc ({1.46}-{12.4}), La/Yb ({5.84}-{19.0})] and variable Th/U ratios, with ΣREE=129-296μg/g, δEu={0.51}-{0.86}, and (La/Yb)-N={3.95}-{12.9}. The Nd isotopic model ages t-{DM} of these rocks vary from 1597 to 2124 Ma. Their {}+{143}Nd/+{144}Nd values are low [ε-{Nd}(0)={-11.4} to {-15.8}]. Some conclusions have been drawn as follows: (1) The metamorphic rocks in central Jiangxi Province are likely formed in a tectonic environment at the passive continental margin of the Cathaysia massif. (2) The metamorphosed argillo-arenaceous rocks are composed dominantly of upper crustal-source rocks (Al- and K|rich granitic or/and sedimentary rocks of Early Proterozoic), which experienced good sorting, slow deposition and more intense chemical weathering. (3) According to the whole-rock Sm-Nd isochron ages (1113±49 to 1199±26 Ma) of plagioclase-amphibole (schist) and Nd isotopic model age t-{DM} (1597-2124 Ma) of meta-argillo-arenaceous rocks, the metamorphic belt in central Jiangxi Province was formed during the Middle Proterozoic (1100-1600 Ma).展开更多
The origin, age and evolution of the Precambrian metamorphic basement of southern China provide useful insights into early crustal development. Here, we present new laser ablation-inductively coupled plasma-mass spect...The origin, age and evolution of the Precambrian metamorphic basement of southern China provide useful insights into early crustal development. Here, we present new laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb age data for detrital zircons from five samples of the Precambrian metamorphic basement of the Xiangshan uranium orefield. Two of these samples, from the northern Xiangshan volcanic basin, yielded a total of 140 U-Pb ages that cluster within the Neoproterozoic (773-963 Ma; 79.3% of data points), with the rest being scattered through the Paleoproterozoic and Mesoproterozoic, along with a single Archean age. These ages indicate that this basement material is associated with the Cathaysia Block. In comparison, the 172 concordant ages from the other three samples from the southern part of the Xiangshan volcanic basin cluster within the Neoproterozoic (767-944 Ma; 59.8%) as well as the Proterozoic (37.8%) and the Archean (2502-2712 Ma; 14.5%). These samples are also free of zircons with Grenvillian ages, indicating that these units are associated with the southeastern Yangtze Block. Combining these data with the geochemistry of these units, which suggests that the metamorphosed sedimentary rocks within the northern and southern parts of the Xiangshan basin have a common component from a magmatic island arc that formed during the early Neoproterozoic, we infer that the basin was located along the boundary between the Cathaysian and Yangtze blocks. In addition, the zircons within the samples from the southern and northern parts of the Xiangshan basin show different pre-Neoproterozoic (963 Ma) age populations but similar post- Neoproterozoic zircon populations, indicating that the amalgamation of the Cathaysian and Yangtze blocks occurred after the Neoproterozoic (960 Ma), with magmatism peaking at 830 Ma and rifting starting at -770 Ma, leading to the subsequent deposition (from bottom to top) of the Shenshan, Kuli, and Shangshi formations.展开更多
This paper re-describes the characteristics of pre-Ordovician (Pt3) metamorphic volcanic rocks in the Huimin-Manlai region of Yunnan Province from the aspects of petrographic characteristics, rock assemblage, petroche...This paper re-describes the characteristics of pre-Ordovician (Pt3) metamorphic volcanic rocks in the Huimin-Manlai region of Yunnan Province from the aspects of petrographic characteristics, rock assemblage, petrochemistry, REE, trace elements, lead isotopes and geotectonic setting. The metamorphic volcanic rocks maintain blasto-intergranular and blasto-andesitic textures; the volcanic rocks are characterized by a basalt-andesite-dacite assemblage; the volcanic rocks are basic-intermediate-intermediate-acid in chemical composition, belonging to semi-alkaline rocks, with calc-alkaline series and tholeiite series coexisting, and they are characterized by low TiO2 contents; their REE distribution patterns are of the LREE-enrichment right-inclined type; the volcanic rocks are enriched in large cation elements and commonly enriched in Th and partly depleted in Ti, Cr and P, belonging to the Gondwana type as viewed from their Pb isotopic composition; petrochemically the data points fall mostly within the field of island-arc volcanic rocks. All these characteristics provided new evidence for the existence of original Tethysan island-arc volcanic rocks in the region studied.展开更多
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasivelyaltered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote,prehnite, pumpellyite, actinolite, titanite...The Ordovician volcanic rocks in the Mayaxueshan area have been pervasivelyaltered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote,prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilitesor spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphicgrades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. Thisindicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area haveformed as a result of Caledonian regional metamorphism. We suggest that the previously denotedspilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks.The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite faciesfor the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpellyite to lowergreenschist facies for the lower part of the Middle Ordovician volcanic rocks, and lower greenschistfacies for the Lower Ordovician volcanic rocks. The P-T conditions are estimated as T = 240 - 290deg C and P = 1.5-4.5 kbar for the lower part of the Middle Ordovician rocks, and T = approx 300 degC for the Lower Ordovician rocks. The variations of mineral assemblages occurring at differentdomains of the volcanic rocks were controlled by the variations of the effective bulk composition inthose domains during metamorphism. The geochemical characteristics of Mg-Al chromite in theMayaxueshan volcanic rocks are consistent with an origin of island arc environment.展开更多
Whether the HP and UHP metamorphic rocks of the Dabie-Sulu orogenic belt are of an "in-situ" or "foreign" origin is a long-standing dispute among geologists. Eclogites preserved today in the HP and...Whether the HP and UHP metamorphic rocks of the Dabie-Sulu orogenic belt are of an "in-situ" or "foreign" origin is a long-standing dispute among geologists. Eclogites preserved today in the HP and UHP units constitute merely 5-10%, which are not isolated exotic bodies tectonically intruding into amphibolite facies gneiss, but remnants of once pervasive or widespread eclogite-facies terranes or slabs. The present spatial distribution and forms of the eclogites have resulted from polyphase and progressive deformation and strain partitioning of the HP and UHP slabs. From their formation in deep mantle to their exhumation to the surface, the eclogites have experienced long-term deformation with different strain regimes. The dominant regime responsible for the present spatial distribution and forms of the eclogites is the shear process. The deformation patterns of the eclogites and gneiss matrix also clearly show that the eclogites were metamorphosed in situ. The original distribution area of the eclogites展开更多
A preliminary study of paleomagnetism and rock magnetism has been done on 55 eclogite samples collected from the Chinese Continental Scientific Drilling (CCSD) site at the Maobei (毛北) area, Donghai (东海) Coun...A preliminary study of paleomagnetism and rock magnetism has been done on 55 eclogite samples collected from the Chinese Continental Scientific Drilling (CCSD) site at the Maobei (毛北) area, Donghai (东海) County, Jiangsu (江苏) Province. Also the isothermal remanence, hysteresis loop, magnetic fabric, thermal susceptibility were measured, and analyses were made by electron-probe and scanning electric microscope on some samples synchronously. The result indicates that there are two groups of stable remanence, the normal and reversed magnetization. The remanence orientations are: D=94.3°, I=-29.1° and D=273.7°, I=15.4°, respectively. The magnetization intensity and the density of the samples which carry the normal magnetization are very different from those bearing reversed magnetization. The magnetic anisotropy is weak, and the minimum axis is hardly determined. The isothermal remanence and the hysteresis loop show that the magnetic carriers of the eclogite are likely SD (single domain) and PSD (pseudo.single domain) magnetite. According to the magnetic property, the cause of formation of magnetic carriers, the mechanism of the remanence, and the significance for the tectonics are discussed.展开更多
The metamophic peridotite of ophiolite belt in Mt. Ailao is composed of lherzolite and harzburgite. The former shows the charateristics of primary pyrolite and the latter shows those of deleted (relict)pyrolite. By pa...The metamophic peridotite of ophiolite belt in Mt. Ailao is composed of lherzolite and harzburgite. The former shows the charateristics of primary pyrolite and the latter shows those of deleted (relict)pyrolite. By partial melting of lherzolite, two primary magmas: tholeiitic magma and picrite-basalt magma are formed. The former evoluted into gabbro-diabase-pyroxenic basalt rock series and show the characteristics of MORB; while the latter evoluted into gabbro-diorite-albite basalt-picrite basalt one, and show the characteristics of para-MORB.展开更多
The origin of the central Qiangtang metamorphic belt(CQMB)has long been in debate,which is not clear whether this belt is the exhumed Jinsha oceanic plate that had been subducted and underthrusted beneath the Qiangtan...The origin of the central Qiangtang metamorphic belt(CQMB)has long been in debate,which is not clear whether this belt is the exhumed Jinsha oceanic plate that had been subducted and underthrusted beneath the Qiangtang Block,or the in situ Longmu Co-Shuanghu suture that separated the south and north Qiangtang blocks.Here we report field observations,zircon U-Pb ages and Lu-Hf isotopes,as well as whole rock geochemistry and Sr-Nd isotopes of the Late Triassic volcanic rocks near the Chabo Co within the southern margin of the CQMB.The ca.229 Ma Chabo Co volcanic rocks and limestones possess characteristic lithologies of a seamount.Their geochemical and isotopic compositions are similar to OIB-type lavas.Unlike other metabasalts(eclogites and blueschists)in the CQMB,the Chabo Co volcanic rocks are OIB-type lavas that did not experience high-grade metamorphism;this is likely because that the Chabo Co seamount was detached from the subducting Longmu Co-Shuanghu oceanic slab.This work provides new solid evidences for an in situ origin of the CQMB.展开更多
基金supported by the Chinese National Key Scientific Program--the Chinese Continental Seientitle Drilling Projectthe National Natural Science Foundation of China(NSFC Grant 49772142)1:250000 Regional Geological Survey of the Lianyungang Sheet(I50C002004)of P.R.China and the Laboratory of Continental Dynamics of the Land and Resource Ministry of China
文摘The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud
文摘Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the HP metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The two- mica albite gneisses have 206 Pb/ 204 Pb=17.657-18.168, 207 Pb/ 204 Pb=15.318-15.573, 208 Pb/ 204 Pb=38.315-38.990, and the eclogites have 206 Pb/ 204 Pb=17.599-18.310, 207 Pb/ 204 Pb=15.465- 15.615 , 208 Pb/ 204 Pb=37.968-39.143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have 206 Pb/ 204 Pb=17.128-17.434, 207 Pb/ 204 Pb=15.313-15.422 and 208 Pb/ 204 Pb=37.631-38.122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.
文摘The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor amphibolite. These rocks underwent amphibolite-facies metamorphism. The meta-argillo-arenaceous rocks show large variations in major element composition, but have similar REE patterns and trace element composition, incompatible element and LIE enrichments [high Th/Sc ({0.57}-{3.59}), La/Sc ({1.46}-{12.4}), La/Yb ({5.84}-{19.0})] and variable Th/U ratios, with ΣREE=129-296μg/g, δEu={0.51}-{0.86}, and (La/Yb)-N={3.95}-{12.9}. The Nd isotopic model ages t-{DM} of these rocks vary from 1597 to 2124 Ma. Their {}+{143}Nd/+{144}Nd values are low [ε-{Nd}(0)={-11.4} to {-15.8}]. Some conclusions have been drawn as follows: (1) The metamorphic rocks in central Jiangxi Province are likely formed in a tectonic environment at the passive continental margin of the Cathaysia massif. (2) The metamorphosed argillo-arenaceous rocks are composed dominantly of upper crustal-source rocks (Al- and K|rich granitic or/and sedimentary rocks of Early Proterozoic), which experienced good sorting, slow deposition and more intense chemical weathering. (3) According to the whole-rock Sm-Nd isochron ages (1113±49 to 1199±26 Ma) of plagioclase-amphibole (schist) and Nd isotopic model age t-{DM} (1597-2124 Ma) of meta-argillo-arenaceous rocks, the metamorphic belt in central Jiangxi Province was formed during the Middle Proterozoic (1100-1600 Ma).
基金financially supported by the National Natural Science Foundation of China(Grant No.41602069 and 41572185)the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory(Grant No.RGET1402)+1 种基金the Natural Science Foundation of Jiangxi Province(Grant No.20171BAB213026)Science and technology research projectfrom the Education Department of Jiangxi Province(Grant No.GJJ150554)
文摘The origin, age and evolution of the Precambrian metamorphic basement of southern China provide useful insights into early crustal development. Here, we present new laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb age data for detrital zircons from five samples of the Precambrian metamorphic basement of the Xiangshan uranium orefield. Two of these samples, from the northern Xiangshan volcanic basin, yielded a total of 140 U-Pb ages that cluster within the Neoproterozoic (773-963 Ma; 79.3% of data points), with the rest being scattered through the Paleoproterozoic and Mesoproterozoic, along with a single Archean age. These ages indicate that this basement material is associated with the Cathaysia Block. In comparison, the 172 concordant ages from the other three samples from the southern part of the Xiangshan volcanic basin cluster within the Neoproterozoic (767-944 Ma; 59.8%) as well as the Proterozoic (37.8%) and the Archean (2502-2712 Ma; 14.5%). These samples are also free of zircons with Grenvillian ages, indicating that these units are associated with the southeastern Yangtze Block. Combining these data with the geochemistry of these units, which suggests that the metamorphosed sedimentary rocks within the northern and southern parts of the Xiangshan basin have a common component from a magmatic island arc that formed during the early Neoproterozoic, we infer that the basin was located along the boundary between the Cathaysian and Yangtze blocks. In addition, the zircons within the samples from the southern and northern parts of the Xiangshan basin show different pre-Neoproterozoic (963 Ma) age populations but similar post- Neoproterozoic zircon populations, indicating that the amalgamation of the Cathaysian and Yangtze blocks occurred after the Neoproterozoic (960 Ma), with magmatism peaking at 830 Ma and rifting starting at -770 Ma, leading to the subsequent deposition (from bottom to top) of the Shenshan, Kuli, and Shangshi formations.
基金This research was granted by the National Natural Science Foundation of China (Grant No. 40372105).
文摘This paper re-describes the characteristics of pre-Ordovician (Pt3) metamorphic volcanic rocks in the Huimin-Manlai region of Yunnan Province from the aspects of petrographic characteristics, rock assemblage, petrochemistry, REE, trace elements, lead isotopes and geotectonic setting. The metamorphic volcanic rocks maintain blasto-intergranular and blasto-andesitic textures; the volcanic rocks are characterized by a basalt-andesite-dacite assemblage; the volcanic rocks are basic-intermediate-intermediate-acid in chemical composition, belonging to semi-alkaline rocks, with calc-alkaline series and tholeiite series coexisting, and they are characterized by low TiO2 contents; their REE distribution patterns are of the LREE-enrichment right-inclined type; the volcanic rocks are enriched in large cation elements and commonly enriched in Th and partly depleted in Ti, Cr and P, belonging to the Gondwana type as viewed from their Pb isotopic composition; petrochemically the data points fall mostly within the field of island-arc volcanic rocks. All these characteristics provided new evidence for the existence of original Tethysan island-arc volcanic rocks in the region studied.
文摘The Ordovician volcanic rocks in the Mayaxueshan area have been pervasivelyaltered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote,prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilitesor spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphicgrades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. Thisindicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area haveformed as a result of Caledonian regional metamorphism. We suggest that the previously denotedspilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks.The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite faciesfor the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpellyite to lowergreenschist facies for the lower part of the Middle Ordovician volcanic rocks, and lower greenschistfacies for the Lower Ordovician volcanic rocks. The P-T conditions are estimated as T = 240 - 290deg C and P = 1.5-4.5 kbar for the lower part of the Middle Ordovician rocks, and T = approx 300 degC for the Lower Ordovician rocks. The variations of mineral assemblages occurring at differentdomains of the volcanic rocks were controlled by the variations of the effective bulk composition inthose domains during metamorphism. The geochemical characteristics of Mg-Al chromite in theMayaxueshan volcanic rocks are consistent with an origin of island arc environment.
基金support from the Major State Basic Research Development Program of China(No:G1999075506)the Ministry of Land and Resources(No.20001010203).
文摘Whether the HP and UHP metamorphic rocks of the Dabie-Sulu orogenic belt are of an "in-situ" or "foreign" origin is a long-standing dispute among geologists. Eclogites preserved today in the HP and UHP units constitute merely 5-10%, which are not isolated exotic bodies tectonically intruding into amphibolite facies gneiss, but remnants of once pervasive or widespread eclogite-facies terranes or slabs. The present spatial distribution and forms of the eclogites have resulted from polyphase and progressive deformation and strain partitioning of the HP and UHP slabs. From their formation in deep mantle to their exhumation to the surface, the eclogites have experienced long-term deformation with different strain regimes. The dominant regime responsible for the present spatial distribution and forms of the eclogites is the shear process. The deformation patterns of the eclogites and gneiss matrix also clearly show that the eclogites were metamorphosed in situ. The original distribution area of the eclogites
基金This paper is supported by the Focused Subject Program of Beijing (No. XK104910598).
文摘A preliminary study of paleomagnetism and rock magnetism has been done on 55 eclogite samples collected from the Chinese Continental Scientific Drilling (CCSD) site at the Maobei (毛北) area, Donghai (东海) County, Jiangsu (江苏) Province. Also the isothermal remanence, hysteresis loop, magnetic fabric, thermal susceptibility were measured, and analyses were made by electron-probe and scanning electric microscope on some samples synchronously. The result indicates that there are two groups of stable remanence, the normal and reversed magnetization. The remanence orientations are: D=94.3°, I=-29.1° and D=273.7°, I=15.4°, respectively. The magnetization intensity and the density of the samples which carry the normal magnetization are very different from those bearing reversed magnetization. The magnetic anisotropy is weak, and the minimum axis is hardly determined. The isothermal remanence and the hysteresis loop show that the magnetic carriers of the eclogite are likely SD (single domain) and PSD (pseudo.single domain) magnetite. According to the magnetic property, the cause of formation of magnetic carriers, the mechanism of the remanence, and the significance for the tectonics are discussed.
文摘The metamophic peridotite of ophiolite belt in Mt. Ailao is composed of lherzolite and harzburgite. The former shows the charateristics of primary pyrolite and the latter shows those of deleted (relict)pyrolite. By partial melting of lherzolite, two primary magmas: tholeiitic magma and picrite-basalt magma are formed. The former evoluted into gabbro-diabase-pyroxenic basalt rock series and show the characteristics of MORB; while the latter evoluted into gabbro-diorite-albite basalt-picrite basalt one, and show the characteristics of para-MORB.
基金financially supported by the National Natural Science Foundation of China (Nos. 41702212,41672054)the Fundamental Research Funds for Central Universities,China University of Geosciences (Wuhan) (Nos. CUGL170816 and CUGQYZX1745)
文摘The origin of the central Qiangtang metamorphic belt(CQMB)has long been in debate,which is not clear whether this belt is the exhumed Jinsha oceanic plate that had been subducted and underthrusted beneath the Qiangtang Block,or the in situ Longmu Co-Shuanghu suture that separated the south and north Qiangtang blocks.Here we report field observations,zircon U-Pb ages and Lu-Hf isotopes,as well as whole rock geochemistry and Sr-Nd isotopes of the Late Triassic volcanic rocks near the Chabo Co within the southern margin of the CQMB.The ca.229 Ma Chabo Co volcanic rocks and limestones possess characteristic lithologies of a seamount.Their geochemical and isotopic compositions are similar to OIB-type lavas.Unlike other metabasalts(eclogites and blueschists)in the CQMB,the Chabo Co volcanic rocks are OIB-type lavas that did not experience high-grade metamorphism;this is likely because that the Chabo Co seamount was detached from the subducting Longmu Co-Shuanghu oceanic slab.This work provides new solid evidences for an in situ origin of the CQMB.