期刊文献+
共找到3,288篇文章
< 1 2 165 >
每页显示 20 50 100
New Zircon U-Pb Age of the Ore-bearing Porphyry from the Kuga Copper Deposit in the Eastern Bangongco–Nujiang Matallogenic Belt, Tibet 被引量:3
1
作者 LIN Bin SONG Yang +2 位作者 LIU Zhibo LIU Zhenyu GAO Yiming 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期859-861,共3页
Objective As the third most important copper polymetallic metallogenic belt in Tibet, the Bangongco-Nujiang metallogenic belt (BNMB) has attracted much attention among geoscientists all over the world (Lin Bin et ... Objective As the third most important copper polymetallic metallogenic belt in Tibet, the Bangongco-Nujiang metallogenic belt (BNMB) has attracted much attention among geoscientists all over the world (Lin Bin et al., 2017a). There are two ore clusters in the westem of BNMB, the Duolong giant porphyry-epitherrnal Cu (Au, Ag) ore cluster and the Ga'erqiong-Galalelarge porphyry- skarn Cu (Au) ore cluster (Lin Bin et al., 2017a; 2017b). Now, the latest exploration advances show that the Kuga project is the first economic porphyry-skam copper deposit in the eastern of BNMB, with over 0.4 Mt melt copper (333+334) @ 0.9%. However, the Kuga deposit is poorly studied about its diagenetic age. In this study, we present a zircon U-Pb LA-ICP-MS dating of ore-bearing biotite granite, in order to identify the time of the ore- related magmatism and reveal the relationship with the westem of BNMB. 展开更多
关键词 PB TIBET Nujiang Matallogenic Belt New Zircon U-Pb Age of the ore-bearing porphyry from the Kuga Copper Deposit in the Eastern Bangongco
下载PDF
Geochronology, Geochemistry, and Sr–Nd–Hf Isotopes of the Balazha Ore-Bearing Porphyries: Implications for Petrogenesis and Geodynamic Setting of Late Cretaceous Magmatic Rocks in the Northern Lhasa Block, Tibet 被引量:2
2
作者 LIU Wei WANG Baodi +3 位作者 YANG Xiaoyong YUAN Sihua LIU Han LIAO Zhongli 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期1739-1752,共14页
The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and... The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and mineralization. This paper reports zircon chronology, zircon Hf isotope data, wholerock Sr–Nd isotope data, and geochemistry data of Balazha porphyry ores in the northern Lhasa block. Geochemical features show that Balazha ore-bearing porphyries in the northern Lhasa block belong to high-Mg# adakitic rocks with a formation age of ~90 Ma; this is consistent with the Late Cretaceous magmatic activity that occurred at around 90 Ma in the region. The age of adakitic rocks is similar to the molybdenite Re–Os model age of the ore-bearing porphyries in the northern Lhasa block, indicating that the diagenesis and mineralization of both occurred during the same magmatism event in the Late Cretaceous. The Hf and Sr–Nd isotope data indicate that these magmatic rocks are the product of crust–mantle mixing. Differing proportions of materials involved in such an event form different types of medium-acid rocks, including ore-bearing porphyries. Based on regional studies, it has been proposed that Late Cretaceous magmatism and porphyry mineralization in the northern Lhasa block occurred during collision between the Lhasa and Qiangtang blocks. 展开更多
关键词 adakitic rocks collision porphyry deposit Mesozoic Tibet
下载PDF
Mineral Geochemistry of Apatite in the Jiama PorphyrySkarn Deposit,Tibet and its Geological Significance
3
作者 YANG Yang TANG Juxing +8 位作者 ZHANG Zebin TANG Pan XIE Fuwei RAN Fengqin YANG Zongyao YANG Huaichao BAI Yun SUN Miao QI Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期399-415,共17页
The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemi... The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit. 展开更多
关键词 APATITE METALLOGENESIS mineral geochemistry porphyry JIAMA TIBET
下载PDF
Late Jurassic adakitic ore-bearing granodiorite porphyry intrusions in the Xiaokele porphyry Cu(–Mo)deposit,Northeast China:implications for petrogenesis and tectonic setting
4
作者 Yonggang Sun Bile Li +5 位作者 Zhonghai Zhao Qingfeng Ding Fanbo Meng Xusheng Chen Ye Qian Yujin Li 《Acta Geochimica》 EI CAS CSCD 2021年第5期702-717,共16页
The Xiaokele Cu(–Mo)deposit is a recently discovered porphyry deposit in the northern Great Xing’an Range(GXR)of northeast China.The ore bodies in this deposit are mainly hosted within granodiorite porphyry intrusio... The Xiaokele Cu(–Mo)deposit is a recently discovered porphyry deposit in the northern Great Xing’an Range(GXR)of northeast China.The ore bodies in this deposit are mainly hosted within granodiorite porphyry intrusions.Potassic,phyllic,and propylitic alteration zones develop from center to edge.In this paper,we present zircon LA–ICP–MS U–Pb ages,zircon Hf isotopic compositions,and whole-rock geochemistry of the ore-bearing granodiorite porphyries from the Xiaokele Cu(–Mo)deposit.Zircon U–Pb dating suggests that the Xiaokele granodiorite porphyries were emplaced at 148.8±1.1 Ma(weighted-mean age;n=14).The Xiaokele granodiorite porphyries display high SiO2,Al2O3,Sr,and Sr/Y,low K2O/Na2O,MgO,Yb,and Y,belonging to high-SiO2 adakites produced by partial melting of the subducted oceanic slab.Marine sediments were involved in the magma source of the Xiaokele granodiorite porphyries,as indicated by enriched Sr–Nd isotopic compositions(eNd(-t)=-1.17–-0.27),low positive zircon eHf(t)values(0.4–2.2),and high Th contents(4.06–5.20).The adakitic magma subsequently interacted with the mantle peridotites during ascent through the mantle wedge.The Xiaokele granodiorite porphyries were derived from slab melting during the southward subduction of the Mongol–Okhotsk Ocean. 展开更多
关键词 Xiaokele porphyry Cu(–Mo)deposit ADAKITE Slab melting Mongol–Okhotsk Ocean Northern Great Xing’an Range
下载PDF
Ore-bearing Formations and Mineral Resource Prospects of the Peripheral Areas of the Tarim Block 被引量:1
5
作者 HE Jurui RUI Xinjian +4 位作者 GUO Kunyi WU Quanhuai LIU Hongying WANG Futong SUN Chuanmin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期473-477,共5页
The tectonic development of the Tarim block has experienced four stages, i. e. Earth's core accretion and block formation in the Precambrian, margin splitting, opening-closing and piecing up in the Early Palaeozoi... The tectonic development of the Tarim block has experienced four stages, i. e. Earth's core accretion and block formation in the Precambrian, margin splitting, opening-closing and piecing up in the Early Palaeozoic, rift formation and plate unification in the Late Palaeozoic, and basin-mountain coupling and landform shaping in the Meso-Cenozoic, forming six ore-bearing formations and ore deposits of various genetic types in the Tianshan Mountains, Kunlun Mountains and Altun Mountains. In the peripheral areas of Tarim there are four giant intercontinental metallogenic belts passing through, the Central Tianshan and southwestern Tianshan belts in the former USSR and the Qinling-Qilian-Kunlun and Palaeo-Tethys belts in China. According to the macro-analysis on the nearly one thousand known deposits (occurrences) and geophysical-geochemical anomalies, and the information from reconnaissance in some areas, the region has very good prospects for mineral resources. Some of the metallogenic belts may well become the reserve bases for exploration of mineral resources in China. 展开更多
关键词 ore-bearing formation metallogenic condition mineral resources TARIM XINJIANG
下载PDF
Ore-Bearing Formations of the Precambrian in South China and Their Prospects 被引量:1
6
作者 HEJurui WANGAiguo RUIXingjian LIChunhai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期375-379,共5页
In the Precambrian System of the Yangtze and Cathaysian plates six ore-bearing formations can be identified: the Cu-Pb-Zn-bearing formations in volcanic rocks of marine facies of the Neoarchean-Paleoproterozoic, Cu-Au... In the Precambrian System of the Yangtze and Cathaysian plates six ore-bearing formations can be identified: the Cu-Pb-Zn-bearing formations in volcanic rocks of marine facies of the Neoarchean-Paleoproterozoic, Cu-Au-bearing formations and Pb-Zn-bearing formations in volcanic rocks of marine facies of the Mesoproterozoic, Pb-Zn-bearing formations in volcaniclastic rock and carbonate rock of the Neoproterozoic, Fe-Mn-bearing formations in the volcaniclastic rock of the Neoproterozoic, and Ni-Cr-serpentine-bearing formations in ophiolite and ultrabasic rock of the Meso- and Neoproterozoic. They were mostly formed in the marginal rift valleys of the Yangtze and Cathaysian plates, where occur stratabound and stratiform ore deposits, thermal deposits and porphyry polymetallic deposits. The six regions with ore-bearing formations have good prospects for ore deposits. 展开更多
关键词 ore-bearing formation PRECAMBRIAN Yangtze and Cathaysian plates PROSPECTS
下载PDF
Geochronology and geochemistry of the ore-bearing intrusion in the Longgen Lead-Zinc deposit in Tibet and its geological significance 被引量:1
7
作者 ZHANG Shuzhi GAO Shunbao +2 位作者 ZHANG Yongchao LUAN Kang JIANG Xiaojia 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期105-106,共2页
1 Introduction The Longgen Lead-Zinc deposit is located in the southern Gangdise-Nyainqentantanglha plate and belongs to the western section of the Nyainqentantanglha copper-lead-zinc-silver metallogenic belt.In this ... 1 Introduction The Longgen Lead-Zinc deposit is located in the southern Gangdise-Nyainqentantanglha plate and belongs to the western section of the Nyainqentantanglha copper-lead-zinc-silver metallogenic belt.In this paper, 展开更多
关键词 Th Pb Geochronology and geochemistry of the ore-bearing intrusion in the Longgen Lead-Zinc deposit in Tibet and its geological significance high
下载PDF
Geochronology,Geochemistry and Petrogenesis of the Bangbule Quartz Porphyry:Implications for Metallogenesis 被引量:1
8
作者 HE Chuankai WANG Yong +5 位作者 WANG Haiyong TANG Juxing YAN Penggang WANG Yongqiang FU Xuelian FENG Yipeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期744-758,共15页
The Bangbule skarn lead-zinc(Pb-Zn)deposit(>1 Mt Zn+Pb)is located in the western Nyainqentanglha polymetallic metallogenetic belt,central Tibet.Lenticular orebodies are all hosted in skarn and developed in the cont... The Bangbule skarn lead-zinc(Pb-Zn)deposit(>1 Mt Zn+Pb)is located in the western Nyainqentanglha polymetallic metallogenetic belt,central Tibet.Lenticular orebodies are all hosted in skarn and developed in the contact zone between the quartz porphyry and carbonate strata of the mid Paleozoic Middle to Upper Chaguoluoma Formation as well as in carbonate and sandstone beds of the Upper Paleozoic Laga Formation.As a newly discovered skarn deposit,the geological background and metallogenesis of this deposit remain poorly understood.Detailed petrological,geochemical and geochronological data of the ore-related quartz porphyry,helps constrain the mineralization age and contributes to discussion on the ore genesis of the Bangbule deposit.Both endoskarn and exoskarn are identified in the Bangbule deposit.From quartz porphyry to carbonate formation,the exoskarn is zoned from proximal garnet skarn to distal pyroxene skarn.Zircon U-Pb dating results show that the quartz porphyry formed at 73.9±0.8 Ma.Geochemical analysis results show that the quartz porphyry has high contents of SiO_(2)(71.40–74.94 wt%)and K_(2)O+Na_(2)O(3.76–8.46 wt%)with A/CNK values of 0.69 to 1.06.Besides,the quartz porphyry is enriched in large ion lithophile elements(LILEs)and light rare earth elements(LREEs)and have lowεNd(t)(from-8.25 to-8.19)and high initial(^(87)Sr/^(86)Sr)i values(0.713611–0.714478).Major,trace elements and whole-rock F concentration analysis results from the endoskarn samples show higher TFe_(2)O_(3),MgO,CaO,Pb+Zn,W,Sn,Mo and F etc.,and lower alkalis(K_(2)O,Na_(2)O,Sr and Ba)than those of fresh quartz porphyry,indicating that the early ore-forming fluids were an Ca-Fe-F-enriched fluid.Massive ore in the proximal skarn might be related to the high F content in the magma,which lowered the solidus temperature of the quartz porphyry magma and caused a lower temperature of the ore-forming fluids,as well as facilitating the precipitation of sphalerite and galena.Based on the geochemical characteristics presented in this study,we propose that the ore-related quartz porphyry was formed by partial melting of crust materials with some juvenile crustal component input.The partial melting of the middle-upper crust after the initial enrichment of lead and zinc elements are important for the formation of Pb-Zn deposits.The case study of the Bangbule deposit has proven that there is still a crust-derived magmatic source region in the western segment of the central Lhasa terrane.Therefore,there is still great potential for Pb-Zn mineralization and Pb-Zn exploration. 展开更多
关键词 PETROGENESIS quartz porphyry METALLOGENESIS Bangbule skarn deposit TIBET
下载PDF
Correction:Gardaneh Salavat porphyry copper system:Is it about metal endowment or fertility of the porphyritic intrusion?
9
作者 Seyyed Reza Mashhadi 《Acta Geochimica》 EI CAS CSCD 2022年第6期1123-1123,共1页
Correction to:Acta Geochim(2022)41(3):496-514 https://doi.org/10.1007/s11631-022-00535-0 In the original publication of the article,under the section“4.1 Proposed hypothesis for Gardaneh Salavat porphyry system”,on ... Correction to:Acta Geochim(2022)41(3):496-514 https://doi.org/10.1007/s11631-022-00535-0 In the original publication of the article,under the section“4.1 Proposed hypothesis for Gardaneh Salavat porphyry system”,on page 509,the following sentence“Du and Audétat(2020)believed that early sulfide saturation is not necessarily detrimental to deposit formation or fertility of porphyritic intrusions.Further proving this fact”was included incorrectly. 展开更多
关键词 porphyry INTRUSION DEPOSIT
下载PDF
Gardaneh Salavat porphyry copper system: Is it about metal endowment or fertility of the porphyritic intrusion?
10
作者 Seyyed Reza Mashhadi 《Acta Geochimica》 EI CAS CSCD 2022年第3期496-514,共19页
Gardaneh Salavat porphyry copper system is located in the northwest of Iran. It comprises a quartz diorite to diorite porphyritic intrusion that created extensive alteration haloes in the host rocks. Despite all techn... Gardaneh Salavat porphyry copper system is located in the northwest of Iran. It comprises a quartz diorite to diorite porphyritic intrusion that created extensive alteration haloes in the host rocks. Despite all technical considerations, the exploration activities did not yield to ore discovery. As the matter of fact, all of the geological,geophysical, and geochemical characteristics of a porphyry Cu-Au deposit exist but there is no economic mineralization. Detailed examinations suggest that the only reasonable explanation can be related to the infertility or low metal endowment of the porphyritic intrusion. The reasons include(1) anomalous ranges of Cu, Au, and Mo rather than economic ore grades,(2) weakly development of potassic alteration,(3) probably sulfur saturation of magma that occurred before intrusion emplacement in the host rocks, and(4) probably low metal endowment in the regional scale and the lack of known porphyry copper deposits in close neighborhoods. It is tried to test the proposed hypothesis with the introduced fertility indicators based on major and trace element geochemistry. However,current fertility indicators could not prove or reject the proposed hypothesis for Gardaneh Salavat porphyritic intrusion because of the high-K calc-alkaline to shoshonitic nature of the intrusive rocks together with the unavailability of relatively fresh/unaltered samples. This case study is notable to examine because(1) it shows that characterization of fertile from barren intrusions seems to be as important as vectoring towards concealed porphyry copper deposits, especially while dealing with deep exploration targets that are associated with high financial risks, and(2) it highlights the inefficiencies and uncertainties in introduced magma fertility indicators for porphyry copper intrusions. As a result, it is of high importance to conduct an overarching investigation on other possible fertility indicators as a fundamental need for the future of the exploration industry. 展开更多
关键词 porphyry Copper FERTILITY Metal endowment Barren intrusion
下载PDF
Geology and mineralization of the Daheishan supergiant porphyry molybdenum deposit(1.65 Bt),Jilin,China:A review
11
作者 Nan Ju Di Zhang +11 位作者 Guo-bin Zhang Sen Zhang Chuan-tao Ren Yun-sheng Ren Hui Wang Yue Wu Xin Liu Lu Shi Rong-rong Guo Qun Yang Zhen-ming Sun Yu-jie Hao 《China Geology》 CAS CSCD 2023年第3期494-530,共37页
The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with tot... The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with total molybdenum reserves of 1.65 billion tons,an average molybdenum ore grade of 0.081%,and molybdenum resources of 1.09 million tons.The main ore body is housed in the granodiorite porphyry plutons and their surrounding inequigranular granodiorite plutons,with high-grade ores largely located in the ore-bearing granodiorite porphyries in the middle-upper part of the porphyry plutons.Specifically,it appears as an ore pipe with a large upper part and a small lower part,measuring about 1700 m in length and width,extending for about 500 m vertically,and covering an area of 2.3 km^(2).Mineralogically,the main ore body consists of molybdenite,chalcopyrite,and sphalerite horizontally from its center outward and exhibits molybdenite,azurite,and pyrite vertically from top to bottom.The primary ore minerals include pyrite and molybdenite,and the secondary ore minerals include sphalerite,chalcopyrite,tetrahedrite,and scheelite,with average grades of molybdenum,copper,sulfur,gallium,and rhenium being 0.081%,0.033%,1.67%,0.001%,and 0.0012%,respectively.The ore-forming fluids of the Daheishan deposit originated as the CO_(2)-H_(2)O-NaCl multiphase magmatic fluid system,rich in CO_(2)and bearing minor amounts of CH4,N2,and H2S,and later mixed with meteoric precipitation.In various mineralization stages,the ore-forming fluids had homogenization temperatures of>420℃‒400℃,360℃‒350℃,340℃‒230℃,220℃‒210℃,and 180℃‒160℃and salinities of>41.05%‒9.8%NaCleqv,38.16%‒4.48%NaCleqv,35.78%‒4.49%NaCleqv,7.43%NaCleqv,and 7.8%‒9.5%NaCleqv,respectively.The mineralization of the Daheishan deposit occurred at 186‒167 Ma.The granites closely related to the mineralization include granodiorites(granodiorite porphyries)and monzogranites(monzogranite porphyries),which were mineralized after magmatic evolution(189‒167 Ma).Moreover,these mineralization-related granites exhibit low initial strontium content and high initial neodymium content,indicating that these granites underwent crust-mantle mixing.The Daheishan deposit formed during the Early-Middle Jurassic,during which basaltic magma underplating induced the lower-crust melting,leading to the formation of magma chambers.After the fractional crystallization of magmas,ore-bearing fluids formed.As the temperature and pressure decreased,the ore-bearing fluids boiled drops while ascending,leading to massive unloading of metal elements.Consequently,brecciated and veinlet-disseminated ore bodies formed. 展开更多
关键词 Molybdenum deposit porphyry type Granodiorite porphyry Crust-mantle mixing METALLIZATION U-Pb age O-S-Pb isotope Re isotope Inclusion type ore-bearing fluid Metallogenic model Prospecting model Mineral exploration engineering
下载PDF
GEOTECTONIC BACKGROUND OF PYROPHYLLITE MINERALIZATION AND ORE-BEARING VOLCANIC FORMATION IN SOUTHEASTERN COASTAL AREAS,CHINA
12
作者 Wang Ling(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China)Liu Dongshen (Geologic Institute, National Construction Material Industry Bureau, 100010, Beijing, China) 《Geotectonica et Metallogenia》 1996年第Z1期46-50,共5页
GEOTECTONIC BACKGROUND OF PYROPHYLLITE MINERALIZATIONAND ORE-BEARING VOLCANICFORMATION IN SOUTHEASTERNCOASTAL AREAS, CHINAWang Ling(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China)L... GEOTECTONIC BACKGROUND OF PYROPHYLLITE MINERALIZATIONAND ORE-BEARING VOLCANICFORMATION IN SOUTHEASTERNCOASTAL AREAS, CHINAWang Ling(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China)Liu Dongshen (Geologic Institute, National Construction Material Industry Bureau, 100010, Beijing, China)pyrophyllite, Diwa structure, nonmetallic metailogeny, ore-bearing forma-tion , the Sountheastern Coastal Areas, ChinaThe volcanic gas-liguid type of pyrophyllite deposits in the SoutheasternCoastal areas, China are the product of tectono-magama-volcanism in Diwa regions. The pyro-phyllite ore-bearing volcanic formation were formed in the maximum-mobility period of Diwa, which are mainly the Late Jurassic strata and are secondly the Early Cretaceous volcanic-sedi-mentary rock series strata. The lithology of the host rock is mainly rhyolitic crystal-vitric tuff, and the chemical composition is characterized by high silicon rich alumium and low iron, be-longing to the 展开更多
关键词 PYROPHYLLITE DIWA structure nonmetallic metailogeny ore-bearing forma-tion the Sountheastern Coastal Areas China
下载PDF
Textural and compositional variation of mica from the Dexing porphyry Cu deposit:constraints on the behavior of halogens in porphyry systems
13
作者 Yan Liu Jian-Feng Gao +1 位作者 Liang Qi Kang Min 《Acta Geochimica》 EI CAS CSCD 2023年第2期221-240,共20页
The Dexing porphyry deposit is the largest porphyry Cu–Mo–Au deposit in South China.Biotite composition can record the physicochemical conditions and evolution history of magmatic-hydrothermal system.Biotite from th... The Dexing porphyry deposit is the largest porphyry Cu–Mo–Au deposit in South China.Biotite composition can record the physicochemical conditions and evolution history of magmatic-hydrothermal system.Biotite from the Dexing porphyry deposit could be divided to three types:primary magmatic biotite(Bi-M),hydrothermal altered magmatic biotite(Bi-A)and hydrothermal biotite(Bi-H).The temperature of Bi-M and Bi-H range from 719 to 767℃ and 690 to 727℃,respectively.Both magmatic and hydrothermal biotite have high Fe^(3+)/Fe^(2+)ratios(from 0.18 to 0.24)and XMgvalues(from 0.57 to 0.66),indicating a high oxygen fugacity.BiM has F lower than Bi-A and Bi-H(up to 0.26 wt%),but has Cl(Cl=0.18–0.30 wt%)similar to Bi-A and Bi-H(Cl=0.21–0.35 wt%),suggesting that high Cl/F ratios of early hydrothermal fluid may result from the exsolution from high Cl magma.From potassic alteration zone to phyllic and propylitic alteration zones,Cl decreases with increasing Cu,whereas F increases roughly.Therefore,Cl mostly originate from magma,but enrichment of F possibly results from reaction of fluids and Neoproterozoic strata.Negative correlation between Cl and Cu indicates that Cl might act as an important catalyst during Cu mineralization process.Biotite from Dexing has similar halogen compositions to other porphyry Cu-/Mo deposits in the world.Chlorine contents of hydrothermal fluid may be critical for Cu transportation and enrichment,while consumption of Cl would promote Cu deposition. 展开更多
关键词 HALOGEN Dexing porphyry deposit BIOTITE GEOCHEMISTRY porphyry Cu deposit
下载PDF
Petrogenesis and Physicochemical Conditions of Fertile Porphyry in Non-arc Porphyry Mineralization:A Case from Habo Porphyry Cu-Mo Deposits,SW China
14
作者 ZHANG Aiping ZHENG Yuanchuan +4 位作者 SHEN Yang Qi Qunjia WANG Zixuan WU Changda WANG Lu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第2期469-485,共17页
The Habo deposit is a typical porphyry Cu-Mo deposit in the Ailaoshan–Red River metallogenic belt.Ore minerals in the Habo deposit typically occur as veins in the monzonite porphyry.Zircon U-Pb dating suggests that t... The Habo deposit is a typical porphyry Cu-Mo deposit in the Ailaoshan–Red River metallogenic belt.Ore minerals in the Habo deposit typically occur as veins in the monzonite porphyry.Zircon U-Pb dating suggests that the monzonite porphyry formed at 35.07±0.38 Ma.The monzonite porphyry is characterized by high SiO_(2),Al_(2)O_(3),K_(2)O and Na_(2)O contents,with A/CNK ratios ranging from 0.97 to 1.02.All samples exhibit fractionated REE patterns,characterized by high(La/Yb)N ratios(9.4–13.6,average of 11.2).They show adakite-like geochemical features,high Sr concentrations(627–751 ppm,average of 700 ppm),low Y concentrations(15.13–16.86 ppm,average of 15.81 ppm)and high Sr/Y values(39.5–47.4,average of 44.3).These samples have high initial^(87)Sr/^(86)Sr ratios(0.7074–0.7076)and negativeεNd(t)values(-5.1 to-3.7),whereas the zirconεHf(t)values range from-2.2 to+0.4,suggesting that the monzonite porphyry was derived from the partial melting of a thickened juvenile lower crust.The oxygen fugacity,calculated on the basis of the chemical composition of the amphiboles,shows?NNO values ranging from+1.65 to+2.16(average of 1.94)and lg(fO_(2))ranging from-12.72 to-11.99(average of-12.25),indicating that the monzonite porphyry has high oxygen fugacity.Zircons have high Ce^(4+)/Ce^(3+)ratios(29.29–164.24,average of 84.92),with high?FMQ values ranging from+0.50 to+1.51(average of 0.87)and high lg(fO_(2))values ranging from-14.72 to-12.85(average of-14.07),which also indicates that the oxygen fugacity of the magma was high.The dissolved water content of the Habo monzonite porphyry is 9.5–11.5 wt%,according to the geochemical characteristics,zircon-saturation thermometry(692–794°C)and the mineral phases(amphibole,no plagioclase)in the deep magma chamber.Combined with previous studies,we propose that the high oxygen fugacity and high water content of magma played key roles in controlling the formation of the Habo and other Cu-Mo-Au deposits in the Ailaoshan–Red River metallogenic belt. 展开更多
关键词 magmatic oxidation state water content monzonite porphyry Habo porphyry Cu-Mo deposit Ailaoshan-Red River metallogenic belt
下载PDF
ORE-BEARING GROUNDWATER MINERALIZATION OF DEVONIAN CARBONATE ROCK-HOSTED Pb-Zn AND Sb DEPOSITS IN NANLING,CHINA
15
《Geotectonica et Metallogenia》 1994年第Z2期105-107,共3页
关键词 Pb ROCK ore-bearing GROUNDWATER MINERALIZATION OF DEVONIAN CARBONATE ROCK-HOSTED Pb-Zn AND Sb DEPOSITS IN NANLING CHINA Zn SB
下载PDF
Geology and mineralization of the Duobaoshan supergiant porphyry Cu-Au-Mo-Ag deposit(2.36 Mt)in Heilongjiang Province,China:A review
16
作者 Sen Zhang Nan Ju +10 位作者 Guo-bin Zhang Yuan-dong Zhao Yun-sheng Ren Bao-shan Liu Hui Wang Rong-rong Guo Qun Yang Zhen-ming Sun Feng-ming Xu Ke-yong Wang Yu-jie Hao 《China Geology》 CAS CSCD 2023年第1期100-136,共37页
The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the worl... The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world.It has proven resources of copper(Cu),molybdenum(Mo),gold(Au),and silver(Ag)of 2.28×10^(6)t,80×10^(3)t,73 t,and 1046 t,respectively.The major characteristics of the Duobaoshan porphyry Cu deposit are as follows.It is located in a zone sandwiched by the Siberian,North China,and paleo-Pacific plates in an island arc tectonic setting and was formed by the Paleozoic mineralization and the Mesozoic mineralization induced by superposition and transformation.The metallogenic porphyries are the Middle Hercynian granodiorite porphyries.The alterations of surrounding rocks are distributed in a ring form.With silicified porphyries at the center,the alteration zones of K-feldspar,biotite,sericite,and propylite occur from inside to outside.This deposit is composed of 215 ore bodies(including 14 major ore bodies)in four mineralized zones.Ore body No.X in the No.3 mineralized zone has the largest resource reserves,accounting for more than 78%of the total reserves of the deposit.Major ore components include Cu,Mo,Au,Ag,Se,and Ga,which have an average content of 0.46%,0.015%,0.16 g/t,1.22 g/t,0.0003%,and 0.001%-0.003%,respectively.The ore minerals of this deposit primarily include pyrite,chalcopyrite,bornite,and molybdenite,followed by magnetite,hematite,rutile,gelenite,and sphalerite.The ore-forming fluids of this deposit were magmatic water in the early metallogenic stage and then the mixture of meteoric water and magmatic water at the late metallogenic stage.The ore-forming fluids experienced three stages.The ore-forming fluids of stageⅠhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 375-650℃,and ore-forming pressure of 110-160 MPa.The ore-forming fluids of stageⅡhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 310-350℃,and ore-forming pressure of 58-80 MPa.The ore-forming fluids of stageⅢhad a hydrochemical type of Na Cl-H_(2)O,an ore-forming temperature of 210-290℃,and ore-forming pressure of 5-12 MPa.The CuAu-Mo-Ag mineralization mainly occurred at stagesⅠandⅡ,with the ore-forming materials having a mixed crust-mantle source.The Duobaoshan porphyry Cu deposit was formed in the initial subduction environment of the Paleo-Asian Ocean Plate during the Early Ordovician.Then,due to the closure of the Mongol-Okhotsk Ocean and the subduction and compression of the Paleo-Pacific Ocean,a composite orogenic metallogenic model of the deposit was formed.In other words,it is a porphyry-epithermal copper-gold polymetallic mineralization system of composite orogeny consisting of Paleozoic island arcs and Mesozoic orogeny and extension. 展开更多
关键词 Cu-Au-Mo-Ag deposit porphyry MINERALIZATION Mineralization model Mineral exploration engineering Prospecting modle Duobaoshan Heilongjiang China
下载PDF
Geology, geochronology, and exploration of the Jiama giant porphyry copper deposit (11 Mt), Tibet, China: A review
17
作者 Bin Lin Ju-xing Tang +8 位作者 Pan Tang Wen-bao Zheng Yang Song Fa-qiao Li Qiu-feng Leng Zhi-chao Wang Jing Qi Miao Sun Juan David Bello Rodríguez 《China Geology》 CAS CSCD 2023年第2期338-357,I0042-I0045,共24页
Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision... Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems. 展开更多
关键词 Copper deposit porphyry copper system O-S-Pb isotope Multicenter complex mineralization Comprehensive exploration model Mineral exploration engineering Gangdese metallogenic belt JIAMA TIBET
下载PDF
Application of tensor CSAMT with high-power orthogonal signal sources in Jiama porphyry copper deposit,South Tibet
18
作者 Peng-liang Yu Ting Qu +3 位作者 Ri-zheng He Jian-li Liu Su-fen Wang Xiao-long Chen 《China Geology》 CAS CSCD 2023年第1期37-49,共13页
The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.Howeve... The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas. 展开更多
关键词 Jiama porphyry copper deposit Supergiant copper polymetallic deposit Tensor CSAMT of 150 kw High power 2D inversion Deep prospecting Mineral exploration engineering Xizang(Tibet)
下载PDF
巴基斯坦新特提斯构造–岩浆演化与重要金属成矿作用
19
作者 洪俊 张辉善 +4 位作者 吕鹏瑞 Tahseenuah Khan Yasir Shaheen Khai 王志华 张海迪 《西北地质》 CAS CSCD 北大核心 2024年第3期154-176,共23页
巴基斯坦在大地构造位置上处于印度、欧亚和阿拉伯三大板块的汇聚带,正同时发生着大陆碰撞和大洋俯冲作用,是研究地球系统深部圈层相互作用与成矿效应的绝佳天然实验室。但是,目前对于巴基斯坦构造演化与成矿作用的研究还不系统,对于巴... 巴基斯坦在大地构造位置上处于印度、欧亚和阿拉伯三大板块的汇聚带,正同时发生着大陆碰撞和大洋俯冲作用,是研究地球系统深部圈层相互作用与成矿效应的绝佳天然实验室。但是,目前对于巴基斯坦构造演化与成矿作用的研究还不系统,对于巴基斯坦的大型–超大型矿床形成的背景和机制仍不清楚。笔者针对巴基斯坦不同类型的优势矿种开展了深入解剖和对比研究,系统梳理最新研究进展,围绕巴基斯坦新特提斯构造–岩浆演化与成矿作用响应的关键科学问题,分析铜矿、铬铁矿、铅锌矿以及碳酸岩有关的稀土矿床等重要金属成矿类型形成的构造环境以及与区域重大地质事件的耦合关系,总结巴基斯坦区域成矿规律,为资源潜力分析和境内外找矿勘查提供依据。 展开更多
关键词 新特提斯 岩浆作用 铬铁矿 斑岩铜矿 碳酸岩 巴基斯坦
下载PDF
西藏多龙斑岩-浅成低温热液型铜(金)矿集区地质特征及找矿潜力分析
20
作者 唐菊兴 杨欢欢 +16 位作者 李宏伟 王勤 李彦波 李社 林彬 李发桥 翟建军 唐晓倩 杨超 董玉杰 李建力 付雪莲 陈守关 袁盛朝 王梦蝶 张琪 张荣坤 《中国矿业》 北大核心 2024年第6期1-13,共13页
本文在总结多龙矿集区地质特征的基础上,开展了矿山深边部的潜力分析,以期为下一步的找矿预测提供勘查思路。多龙斑岩-浅成低温热液型铜(金)矿集区位于西藏班公湖-怒江成矿带的北西侧,主要由铁格隆南超大型斑岩-浅成低温热液型铜(金)矿... 本文在总结多龙矿集区地质特征的基础上,开展了矿山深边部的潜力分析,以期为下一步的找矿预测提供勘查思路。多龙斑岩-浅成低温热液型铜(金)矿集区位于西藏班公湖-怒江成矿带的北西侧,主要由铁格隆南超大型斑岩-浅成低温热液型铜(金)矿床,拿若大型斑岩-隐爆角砾岩筒型铜(金)矿床,多不杂、波龙、多不杂西大型斑岩型铜(金)矿床,尕尔勤、地堡那木岗高硫化浅成低温热液型铜(金)矿点组成,共探获铜资源量超过1500万t,伴生金超250 t,伴生银3900 t。多龙矿集区形成于早白垩世(120 Ma)班公湖-怒江洋盆北向俯冲的陆缘弧环境,物质源区为壳幔混合源,成矿岩浆岩主要为中酸性的闪长玢岩-花岗闪长斑岩-花岗斑岩系列,具有弧岩浆特征。俯冲板片的折返是多龙矿集区深部岩浆形成和侵位的主要动力学机制,成矿后安山质火山岩(110 Ma)的覆盖对矿床起到重要的保存作用。多不杂矿区F2逆断层将矿体分割成上、下两部分,下部分矿体是找矿的重点方向。铁格隆南矿区深钻揭露了由南向北的逆冲断层,该逆冲断层将矿体错断并推覆到“红层”沉积之上,其下盘是寻找另一半隐伏矿体的方向。尕尔勤矿区大面积发育指示浅成低温热液成矿系统的“硅帽”,明显富集Au、Ag、As、Sb、Bi、Cu等元素,Au、As、Sb、Hg等呈现较好的元素组合异常,具有寻找浅成低温热液型矿床的潜力。地堡那木岗矿区发育高硫化浅成低温热液型蚀变(高岭石化、地开石化、明矾石化等)和矿物组合(铜蓝、蓝辉铜矿、斑铜矿等),且物探、化探、遥感异常套合良好,是未来矿产勘查的重点。区内逆冲断层对矿床的改造作用是未来研究的重点,对进一步的勘查评价具有重要的指导意义。 展开更多
关键词 西藏 多龙矿集区 斑岩-浅成低温热液型铜(金)矿床 地质特征 成矿潜力评价
下载PDF
上一页 1 2 165 下一页 到第
使用帮助 返回顶部