The West Junggar region, located in the loci of the Central Asian Orogenic Belt, is a highly endowed metallogenic province with 〉100 tonnes Au, 〉0.7 Mt Cu, 〉0.3 Mt Mo, and 〉2.3 Mt chromite as well as significant a...The West Junggar region, located in the loci of the Central Asian Orogenic Belt, is a highly endowed metallogenic province with 〉100 tonnes Au, 〉0.7 Mt Cu, 〉0.3 Mt Mo, and 〉2.3 Mt chromite as well as significant amounts of Be and U. The West Junggar region has three metallogenic belts distributed systematically from north to south: (1) late Paleozoic Saur Au-Cu belt; (2) early Paleozoic Xiemisitai- Sharburt Be-U-Cu-Zn belt; (3) late Paleozoic Barluk-Kelamay Au-Cu-Mo-Cr belt. These belts host a number of deposits belonging to at least eight economically important styles, including epithermal Au, granite-related Be-U, volcanogenic massive sulfide (VMS) Cu-Zn, podiform chromite, porphyry Cu, hydrothermal quartz vein Au, porphyry-greisen Mo(-W), and orogenic Au. These deposit styles are associated with the tectonics prevalent during their formation. Five tectonic-mineralized epochs can be recognized: (1) Ordovician subduction-related VMS Cu-Zn deposit; (2) Devonian ophiolite-related podiform chromite deposit; (3) early Carboniferous subductionrelated epithermal Au and porphyry Cu deposits; (4) late Carboniferous subduction-related granite-related Be-U, porphyry Cu, and hydrothermal quartz vein Au deposits; and (5) late Carboniferous to early Permian subduction-related por- phyry-greisen Mo(-W) and orogenic Au deposits.展开更多
Based on the studies of geology and geochemistry, A’nymaque—Mianlue limited oceanic basin is comparable to the Paleo\|Tethys on time, sedimentary, biocoenosis, and the type of ophiolite (Coleman, 1984; Deng, 1984; X...Based on the studies of geology and geochemistry, A’nymaque—Mianlue limited oceanic basin is comparable to the Paleo\|Tethys on time, sedimentary, biocoenosis, and the type of ophiolite (Coleman, 1984; Deng, 1984; Xu, 1996;Chenliang, 1999). The A’nyemaqen—Mianlue oceanic basin was one of a northeast branches of Paleo\|Tethys (Zhang Guowei, 1995; 1996) .Our researches on deformations reveal that tectonic styles of the Southwest Qinling orogenic belt is obviously influenced by the dynamics of Qinghai—Tibet plateau.Structural deformation analysis suggested that the southwest part of Qinling have undergone 3 major deformation stages in Mesozoic and Cenozoic. Firstly, rock folding at deep\|middle tectonic level and progressively thrusting shearing characterized the deformation of collision. The thrust tectonics are south\|directed, such as A’nymaque, Wenxian—Kangxian and Mianlue thrusting systems, and the deformations took place in T\-2—T\-3. Secondly, the middle\|tectonic level thrusting and sinistral strike\|slip formed at early intracontinental period (J—K), the thrust tectonics was south\|directed and the regional penetrative left\|lateral slips were NW or NWW. Finally, the east\|west extensional deformations which occurred in late Mesozoic and Cenozoic, a series of north\|south directing basins came into being in this stage, Huixian—Chengxian basin and Lixian basin for example, which overlapped the former deformation styles.展开更多
Dayishan granite, a significant metallogenic-rock body located in Shaoyang-Chenxian tectonomagmatic belt of Hunan Province, was controlled by 'Dayishan-type' fault pattern. Based on the study of tectonic setti...Dayishan granite, a significant metallogenic-rock body located in Shaoyang-Chenxian tectonomagmatic belt of Hunan Province, was controlled by 'Dayishan-type' fault pattern. Based on the study of tectonic setting and geological features of the grantie, it is concluded that the tectonic system controlling magmatic emplacement is a shear folded-fauted zone which resulted from NW-trending convergent strike-slip faulting. The close relationship between the temporal-spatial distribution, emplacement mechanism of Dayishan granite and the strike-slip faulting is detailed.展开更多
During subduction, continental margins experience shortening along with inversion of extensional sedimentary basins. Here we explore a tectonic scenario for the inversion of two-phase extensional basin systems, where ...During subduction, continental margins experience shortening along with inversion of extensional sedimentary basins. Here we explore a tectonic scenario for the inversion of two-phase extensional basin systems, where the Early-Middle Jurassic intra-arc volcano-sedimentary Oseosan Volcanic Complex was developed on top of the Late Triassic-Early Jurassic post-collisional sequences, namely the Chungnam Basin. The basin shortening was accommodated mostly by contractional faults and related folds. In the basement, regional high-angle reverse faults as well as low-angle thrusts accommodate the overall shortening, and are compatible with those preserved in the cover. This suggests that their spatial and temporal development is strongly dependent on the initial basin geometry and inherited structures.Changes in transport direction observed along the basement-sedimentary cover interface is a characteristic structural feature, reflecting sequential kinematic evolution during basin inversion. Propagation of basement faults also enhanced shortening of the overlying sedimentary cover sequences. We constrain timing of the Late Jurassic-Early Cretaceous(ca. 158-110 Ma) inversion from altered K-feldspar 40 Ar/39 Ar ages in stacked thrust sheets and K-Ar illite ages of fault gouges, along with previously reported geochronological data from the area. This "non-magmatic phase" of the Daebo Orogeny is contemporaneous with the timing of magmatic quiescence across the Korean Peninsula. We propose the role of flat/low-angle subduction of the Paleo-Pacific Plate for the development of the "Laramide-style" basement-involved orogenic event along East Asian continental margin.展开更多
基金financially supported by the Innovative Project of the Chinese Academy of Sciences(KZCX-EW-LY02)National Natural Science Foundation of China(Grant Nos.U1303293,41390441,41272109)National 305 Project(2011BAB06B01)
文摘The West Junggar region, located in the loci of the Central Asian Orogenic Belt, is a highly endowed metallogenic province with 〉100 tonnes Au, 〉0.7 Mt Cu, 〉0.3 Mt Mo, and 〉2.3 Mt chromite as well as significant amounts of Be and U. The West Junggar region has three metallogenic belts distributed systematically from north to south: (1) late Paleozoic Saur Au-Cu belt; (2) early Paleozoic Xiemisitai- Sharburt Be-U-Cu-Zn belt; (3) late Paleozoic Barluk-Kelamay Au-Cu-Mo-Cr belt. These belts host a number of deposits belonging to at least eight economically important styles, including epithermal Au, granite-related Be-U, volcanogenic massive sulfide (VMS) Cu-Zn, podiform chromite, porphyry Cu, hydrothermal quartz vein Au, porphyry-greisen Mo(-W), and orogenic Au. These deposit styles are associated with the tectonics prevalent during their formation. Five tectonic-mineralized epochs can be recognized: (1) Ordovician subduction-related VMS Cu-Zn deposit; (2) Devonian ophiolite-related podiform chromite deposit; (3) early Carboniferous subductionrelated epithermal Au and porphyry Cu deposits; (4) late Carboniferous subduction-related granite-related Be-U, porphyry Cu, and hydrothermal quartz vein Au deposits; and (5) late Carboniferous to early Permian subduction-related por- phyry-greisen Mo(-W) and orogenic Au deposits.
文摘Based on the studies of geology and geochemistry, A’nymaque—Mianlue limited oceanic basin is comparable to the Paleo\|Tethys on time, sedimentary, biocoenosis, and the type of ophiolite (Coleman, 1984; Deng, 1984; Xu, 1996;Chenliang, 1999). The A’nyemaqen—Mianlue oceanic basin was one of a northeast branches of Paleo\|Tethys (Zhang Guowei, 1995; 1996) .Our researches on deformations reveal that tectonic styles of the Southwest Qinling orogenic belt is obviously influenced by the dynamics of Qinghai—Tibet plateau.Structural deformation analysis suggested that the southwest part of Qinling have undergone 3 major deformation stages in Mesozoic and Cenozoic. Firstly, rock folding at deep\|middle tectonic level and progressively thrusting shearing characterized the deformation of collision. The thrust tectonics are south\|directed, such as A’nymaque, Wenxian—Kangxian and Mianlue thrusting systems, and the deformations took place in T\-2—T\-3. Secondly, the middle\|tectonic level thrusting and sinistral strike\|slip formed at early intracontinental period (J—K), the thrust tectonics was south\|directed and the regional penetrative left\|lateral slips were NW or NWW. Finally, the east\|west extensional deformations which occurred in late Mesozoic and Cenozoic, a series of north\|south directing basins came into being in this stage, Huixian—Chengxian basin and Lixian basin for example, which overlapped the former deformation styles.
文摘Dayishan granite, a significant metallogenic-rock body located in Shaoyang-Chenxian tectonomagmatic belt of Hunan Province, was controlled by 'Dayishan-type' fault pattern. Based on the study of tectonic setting and geological features of the grantie, it is concluded that the tectonic system controlling magmatic emplacement is a shear folded-fauted zone which resulted from NW-trending convergent strike-slip faulting. The close relationship between the temporal-spatial distribution, emplacement mechanism of Dayishan granite and the strike-slip faulting is detailed.
基金supported by Basic Science Research Program through National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2018R1C 186003851)to S.-I. Park and 2015RIDlAIA09058914 and NRF2019R1A2C1002211 to S. Kwonsupported by the 2017RlA6A1A07015374(Multidisciplinary study forassessment of large earthquake potentials in the Korean Peninsula) through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT, Korea to S.K
文摘During subduction, continental margins experience shortening along with inversion of extensional sedimentary basins. Here we explore a tectonic scenario for the inversion of two-phase extensional basin systems, where the Early-Middle Jurassic intra-arc volcano-sedimentary Oseosan Volcanic Complex was developed on top of the Late Triassic-Early Jurassic post-collisional sequences, namely the Chungnam Basin. The basin shortening was accommodated mostly by contractional faults and related folds. In the basement, regional high-angle reverse faults as well as low-angle thrusts accommodate the overall shortening, and are compatible with those preserved in the cover. This suggests that their spatial and temporal development is strongly dependent on the initial basin geometry and inherited structures.Changes in transport direction observed along the basement-sedimentary cover interface is a characteristic structural feature, reflecting sequential kinematic evolution during basin inversion. Propagation of basement faults also enhanced shortening of the overlying sedimentary cover sequences. We constrain timing of the Late Jurassic-Early Cretaceous(ca. 158-110 Ma) inversion from altered K-feldspar 40 Ar/39 Ar ages in stacked thrust sheets and K-Ar illite ages of fault gouges, along with previously reported geochronological data from the area. This "non-magmatic phase" of the Daebo Orogeny is contemporaneous with the timing of magmatic quiescence across the Korean Peninsula. We propose the role of flat/low-angle subduction of the Paleo-Pacific Plate for the development of the "Laramide-style" basement-involved orogenic event along East Asian continental margin.