The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In t...The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In this study,alongside thermochronological analyses,we examine the macroscopic and microscopic structural features of the Rongxian ductile shear zone,located south of the Darongshan granite in the southeastern part of Guangxi Province,on the southern margin of South China.Sinistral shear is indicated by the characteristics of rotatedσ-type feldspar porphyroclasts,stretching lineations defined by elongated quartz grains and the orientations of quartz c-axes.LA-ICP-MS U-Pb dating of zircons from two samples of granitic mylonite and one of granite yielded ages of ca.256 Ma.Furthermore,two samples of granitic mylonite yield muscovite^(40)Ar/^(39)Ar plateau ages of 249-246 Ma.These results indicate that the Rongxian ductile shear zone resulted from Early Triassic deformation of the late Permian Darongshan granite.This deformation was likely related to the closure of the eastern Paleo-Tethys Ocean and the subsequent collision of the South China and Indochina blocks,during the early stage of the Indosinian orogeny.展开更多
The magma sources,origins and precise forming ages of the miarolite from Qishan and Kuiqi intrusions are still uncertain.New results reveal that,miarolites from the Qishan and Kuiqi intrusions yield crystallization ag...The magma sources,origins and precise forming ages of the miarolite from Qishan and Kuiqi intrusions are still uncertain.New results reveal that,miarolites from the Qishan and Kuiqi intrusions yield crystallization ages of~101 and~98 Ma,and they have a high formation temperature(~910℃)and low oxygen fugacity value,indicating crystallization condition at low pressure in the upper crust with temperature of 678℃.The Qishan and Kuiqi miarolites are characterized by enrichment in SiO_(2) and high-K alkali,depletion in Ca and Mg,and belong to the high-K weak peraluminous rock series.The samples are enriched in HFSEs(i.e.,Ta,Zr and Hf)and LILEs(i.e.,Ba,P and Sr),depleted in Ba and Sr with the negative anomaly of Eu.In the primitive mantle normalized trace element spider diagram,the samples show a right-inclined‘seagull-type’pattern,combined the ratios of(La/Yb)_(N),10000×Al/Ga,Rb/Nb and Nb/Ta etc.,they were proved to be alkaline A-type granite.Combined the characterize of the trace elements,they were derived from clay-rich source accompanied pelite melting,and subjected to K-feldspar crystallization fractional.The values of ε_(Hf)(t)and tDM2 are distributed in the range of-2.8 to 3.3 with~1.2 Ga,and-6.0 to 4.0 with~1.2 Ga,revealing that they were generated from the Mesoproterozoic Cathaysia basement rocks.The comprehensive research reveals the Kuiqi and Qishan intrusions derived from crust-mantle mixing and partial melting of the crust,respectively,resulting from lithospheric extension generated by the Paleo-Pacific Plate subducted into the European-Asian Plate.展开更多
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali...Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.展开更多
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru...The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.展开更多
Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism rem...Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism remains unclear.In this study,U-Pb geochronology,geochemistry,fluid inclusion and C-O isotopic compositions of hydrothermal vein minerals in the Jiangling Basin are examined.Laser ablation U-Pb dating of calcite veins indicates that the ages are slightly younger than the formation age of the Balingshan basalt.Fluid inclusions in hydrothermal minerals show medium–low homogenization temperatures(160–220℃)and low salinities(0.14 to 4.9 wt%NaCl eqv.)and densities(0.882–0.944 g/cm^(3)).The liquid compositions of fluid inclusions in calcite veins from sedimentary strata have higher contents of potassium,compared with those from basalt.The coupled negativeδ^(13)CPDB(-10.3‰to-8.0‰)and positiveδ^(18)OSMOW(17.4‰to 20.7‰)values imply that calcite precipitation resulted from CO_(2)degassing of the basaltic magmatic fluids,as indicated by the gas composition of these inclusions in hydrothermal minerals.Rare earth element patterns indicate that water-rock interaction between hydrothermal fluids and sedimentary wall rocks contributed to the calcite precipitation in sedimentary strata.It is proposed that high-temperature water-rock interaction between magmatic fluids and sedimentary strata resulted in the potassium enrichment in fluids,interpreted as one of the sources of potassium-rich brines in the Jiangling Basin.展开更多
To better understand the Paleo-to Mesoproterozoic tectonic evolution of the Dabie Orogen in the northern margin of Yangtze Block,we present geochronological data for metasedimentary and metavolcanic rocks in the Huwan...To better understand the Paleo-to Mesoproterozoic tectonic evolution of the Dabie Orogen in the northern margin of Yangtze Block,we present geochronological data for metasedimentary and metavolcanic rocks in the Huwan complex.A total of 385 detrital zircon LA-ICP-MS analyses for metasedimentary rocks yielded three^(207)Pb/^(206)Pb age populations:1.50-1.80 Ga,1.81-1.87 Ga and 1.93-2.0 Ga,providing a maximum depositional timing of ca.1.50 Ga;while metafelsic volcanic gneisses yielded protolith U-Pb ages of 1893±54 Ma.The peak ages are remarkably consistent with the tectonothermal events that occurred in the northern Yangtze Block,indicating the presence of Paleo-to Mesoproterozoic magmatism in the Dabie Orogen.The age range of 1.93-2.0 Ga correlates with the Paleoproterozoic collision;the age range of 1.81-1.87 Ga coincides with the period of the post-orogenic extension;and the age range of 1.50-1.80 Ga is interpreted to associate with an extensional regime.Zircon cores with age of 1732-1965 Ma haveε_(Hf)(t)values ranging from-11.70 to-2.47,indicating that juvenile crust involved in their magma sources.Owing to the similar age spectra,we proposed that the nucleus of the Dabie Orogen was close to the Yangtze Block since the Paleoproterozoic.The Huwan complex has an intimate affiliation to the Yangtze Block,and implies multiple orogenic cycles.It was not only experienced the Paleo-Tethys ocean subduction and collision,but also recorded Paleo-to Mesoproterozoic tectono-magmatic events in the Dabie Orogen.展开更多
The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies ...The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies emphasize the Cenozoic deformation due to the far-field response to the Indo-Asian collision,but the Mesozoic deformations are poorly constrained in this area.We conducted detailed field mapping,structural analysis,geochronology,and structural interpretation of deep seismic reflectional profiling and magnetotelluric(MT)sounding,to address the superposed results of the Mesozoic and Cenozoic deformation.The results recognized the North Qilian thrust and nappe system(NQTS),the root and the frontal belt are the North Qilian thrust(NQT),and the Yumu Shan klippe(YK),respectively.The middle belt is located between the NQT and the YK.Monzonitic granite zircon U-Pb dating from the middle belt yields an age of ca.415 Ma,which is similar to south NQT.The thrusting displacement is estimated at ca.48 km by structural interpretation of deep profiles.The timing is constrained in the early stage of the Early Cretaceous by the formation of simultaneous growth strata.We suggest that the NQTS has resulted from the far-field effect of the Lhasa-Qiangtang collision,and the Yumu Shan is uplifted by the superposed Cenozoic deformation.展开更多
The Late Paleozoic and Mesozoic tectonic framework of the Nanpanjiang Basin has much been disputed.Herein,the middle-acid volcanic rock,dacite,exposed to the Zhesang gold district,southeast Yunnan Province,has been an...The Late Paleozoic and Mesozoic tectonic framework of the Nanpanjiang Basin has much been disputed.Herein,the middle-acid volcanic rock,dacite,exposed to the Zhesang gold district,southeast Yunnan Province,has been analyzed.The results show that the dacite belongs to a calc-alkaline series,SiO_(2)contents range from 62.79 to 76.66 wt%.Zircon SHRIMP U–Pb dating of dacite demonstrates that they were formed in the Early Triassic(247.8±1.7 Ma,MSWD=1.2).All samples exhibit enrichment in LILE(e.g.Rb,K,Th,and U),and depletion in HFSE(e.g.Nb,Ta,and Ti),which has the geochemical affinity of I-type granite.La–La/Sm and La–La/Yb discrimination diagrams show that the partial melting,mainly of the mafic lower crust,of rocks,plays a major role in the formation process.The dacite has low initial ^(87)Sr/^(86)Sr ratios(0.706954 to 0.708589)and negative ε_(Nd)(t)values(-11.77 to-10.88).Zircons in dacite have ε_(Hf)(t)values of-16.2 to-8.3,and the two-stage Hf model ages are 1799–2301 Ma,mostly concentrated between 1800 and 1900 Ma,indicating that the magma source area is the reconstructed ancient lower crust mixed with some mantle materials,and crystal fractionation process underwent in the late stage of magma migration.This study reveals that the arc-volcanic rocks of the Early Triassic in the southern margin of the Nanpanjiang Basin were formed by the subduction of the Late Paleozoic ocean basin within the border region between China and Vietnam.展开更多
Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate s...Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate sulfidation epithermal deposits are rarely deciphered due to the lack of appropriate approaches to determine fO_(2)of the fluids.Here,we reported theδ^(34)S of the sulfides from three different stages(stageⅠ,Ⅱ,Ⅲ)of Zhengguang,an Early Ordovician Au-rich intermediate sulfidation(IS)epithermal deposit,to decipher the redox evolution of the ore-forming fluids.The increasingδ^(34)S values from stageⅠpyrite(pyl,average-2.6‰)through py2(average-1.9‰)to py3(average-0.2‰)indicates a decrease of the oxygen fugacity of the ore-forming fluids.A compilation ofδ^(34)S values of sulfides from two subtypes of IS deposits(Au-rich and Ag-rich)from NE China shows that theδ^(34)S values of sulfides from Au-rich IS deposits are systematically lighter than those of Ag-rich IS Ag-Pb-Zn deposit,indicating the ore-forming fluids of the former are more oxidized than the latter.We highlight that sulfur isotopic composition of hypogene sulfides is an efficacious proxy to fingerprint the oxygen fugacity fluctuations of epithermal deposits and could potentially be used to distinguish the subtypes of IS deposits.展开更多
The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization ...The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization are present in the Dahongshan deposit:(1)early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide(pyrite and chalcopyrite)hosted in the Na-rich metavolcanic rocks;(2)late hydrothermal(-vein)type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults.While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit,data related to late hydrothermal mineralization is lacking.In order to establish the metallogenic age and ore-forming material source of the late hydrothermal(-vein)type mineralization,this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H,O,S,and Pb isotopic compositions of the hydrothermal quartz-sulfide veins.The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody.Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831±11 Ma,indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic.The molybdenite has a Re concentration of 99.7-382.4 ppm,indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle.The δ^(34)S values of sulfides from the hydrothermal ores are 2‰-8‰ showing multi-peak tower distribution,suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock.Furthermore,the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores,which may be related to the later hydrothermal transformation.The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water.These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event,which might be related to the breakup of the Rodinia supercontinent.Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal(-vein)type Fe-Cu orebodies by filling and metasomatism.展开更多
To the south of Manzhouli,Hulunbuir,Inner Mongolia,experienced a tectonic regime transformation from compression to extension in the mid-Mesozoic.Based on systematic research of the volcanics,petrology,volcanic facies...To the south of Manzhouli,Hulunbuir,Inner Mongolia,experienced a tectonic regime transformation from compression to extension in the mid-Mesozoic.Based on systematic research of the volcanics,petrology,volcanic facies,chronology and geochemistry of rocks in the Buridun area,two stages of volcanics are identified.The first stage named the trachyte series was formed in the late Middle Jurassic(167-163 Ma),its eruption rhythm is pyroxene trachyandesite-trachyandesite-trachyte,and its origin rock is basic volcanics from thickened lower crust,with a tectonic setting in the collision orogeny after the closure of the Mongolia Okhotsk Ocean(MOO).The second stage is a bimodal volcanic rock,formed in the early Late Jurassic(163-160 Ma).The eruption rhythm of basic volcanics in this stage is basaltic andesite-basalt-olivine basalt,which comes from the metasomatized lithospheric mantle,the acidic volcanics of which being characterized by the eruption rhythm of sedimentary-explosive-overflow facies,which came from the partial melting of newly formed lower crust,and this shows the characteristics of A-type granite;the tectonic setting is extension of the lithosphere after collision and closure of the MOO.The changes in the formation age and tectonic setting of the two stages of volcanics demonstrate that the transition time from the compressive system to the extensional system south of Manzhouli is about 163 Ma.展开更多
As one of the important Paleo-Tethys suture zones in eastern Tibet,the Jinshajiang orogenic belt is of great significance to study the tectonic evolution of the main suture zone of Paleo-Tethys.In this paper,eclogites...As one of the important Paleo-Tethys suture zones in eastern Tibet,the Jinshajiang orogenic belt is of great significance to study the tectonic evolution of the main suture zone of Paleo-Tethys.In this paper,eclogites developed in the Jinshajiang suture zone in Gonjo area,eastern Tibet,are selected as specific research objects,and petrological,geochemical and Ar-Ar geochronological analyses are carried out.The major element data of the whole rock reveals that the eclogite samples have the characteristics of picritic basalt-basalt and belong to the oceanic low potassium tholeiites.The results of rare earth elements and trace elements of the samples show that the protoliths of eclogites have characteristics similar to oceanic island basalt(OIB)or normal mid ocean ridge basalt(N-MORB).Muscovite(phengite)from two eclogite samples yield the Ar-Ar plateau ages of 247±2 Ma and 248±2 Ma respectively,representing the peak metamorphic age of eclogite facies and the timing of complete closure of the Jinshajiang Paleo-Tethys Ocean.Muscovite and biotite selected from the hosting rocks of eclogite yield the Ar-Ar plateau ages are 238±2 Ma and 225±2 Ma respectively,reflecting the exhumation age of eclogites and their hosting rocks.Combined with the zircon U-Pb dating data(244 Ma)of eclogites obtained in previous work,it can be concluded that the Jinshajiang Paleo-Tethys ocean was completely closed and arc-continent collision was initiated at about 248-244 Ma(T21).Subsequently,due to the large-scale arc(continent)-collision orogeney between Deqin-Weixi continental margin arc and Zhongza block(T31-T32),the eclogites were rapidly uplifted to the shallow crust.展开更多
Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain th...Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain their genesis and tectonic significance.Zircon LA-ICP-MS U-Pb data indicate that the rhyolite and rhyolitic lithic crystal tuff were formed during 137±5 Ma and 143±1 Ma,respectively.These volcanic rocks have high SiO2(70.03%–76.46%)and K2O+Na2O(8.10%–9.52%)contents,but low CaO(0.03%–0.95%)and MgO(0.07%–0.67%)contents,which belong to the peraluminous and high-K calc-alkaline rocks.They are enriched in light rare earth elements(REEs),and exhibit fractionation of light over heavy REEs,withδEu values of 0.37–0.83.The volcanic rocks are enriched in LILEs(e.g.,Rb,U and K)and depleted in HFSEs(e.g.,Nb,Ti,P and Ta).The chemical composition suggests that these volcanic rocks formed by partial melting of crust material.Combined with previous regional research results,the authors consider that the volcanic rocks of the Manketouebo Formation in the Keyihe area were formed under an extensional environment related to the closure of the Mongolia–Okhotsk Ocean.展开更多
This paper reviews the basic principles of radiometric geochronology as implemented in a new software package called Isoplot R, which was designed to be free, flexible and future-proof. Isoplot R is free because it is...This paper reviews the basic principles of radiometric geochronology as implemented in a new software package called Isoplot R, which was designed to be free, flexible and future-proof. Isoplot R is free because it is written in non-proprietary languages(R, Javascript and HTML) and is released under the GPL license. The program is flexible because its graphical user interface(GUI) is separated from the command line functionality, and because its code is completely open for inspection and modification. To increase future-proofness, the software is built on free and platform-independent foundations that adhere to international standards, have existed for several decades, and continue to grow in popularity.Isoplot R currently includes functions for U-Pb, Pb-Pb,40 Ar/39 Ar, Rb-Sr, Sm-Nd, Lu-Hf, Re-Os, U-Th-He,fission track and U-series disequilibrium dating. It implements isochron regression in two and three dimensions, visualises multi-aliquot datasets as cumulative age distributions, kernel density estimates and radial plots, and calculates weighted mean ages using a modified Chauvenet outlier detection criterion that accounts for the analytical uncertainties in heteroscedastic datasets. Overdispersion of geochronological data with respect to these analytical uncertainties can be attributed to either a proportional underestimation of the analytical uncertainties, or to an additive geological scatter term.Isoplot R keeps track of error correlations of the isotopic ratio measurements within aliquots of the same samples. It uses a statistical framework that will allow it to handle error correlations between aliquots in the future. Other ongoing developments include the implementation of alternative user interfaces and the integration of Isoplot R with other data reduction software.展开更多
Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablati...Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablation and secondary ionization mass spectrometry) has allowed for large amounts of data to be generated in a relatively short amount of time and such large volume datasets offer the ability to address a range of geological questions that would otherwise remain intractable (e.g. detrital zircons as a sedi- ment fingerprinting method). The ease of acquisition, while bringing benefit to the Earth science com- munity, has also led to diverse interpretations of geochronological data. In this work we seek to refocus U -Pb zircon geochronology toward best practice by providing a robust statistically coherent workflow. We discuss a range of data filtering approaches and their inherent limitations (e.g. discordance and the reduced chi-squared; MSWD). We evaluate appropriate mechanisms to calculate the most geologically appropriate age from both 238U/206pb and 207pb/206pb ratios and demonstrate the cross over position when chronometric power swaps between these ratios. As our in situ analytical techniques become progressively more precise, appropriate statistical handing of U-Pb datasets will become increasingly pertinent.展开更多
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, resp...A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post-orogenic extension from outer orogenic zone to inner part (or collision zone). The determination of the eruption age of the volcanics of the Zhangjiakou Formation definitely constrains the switch period, which began in the Indosinian and finished in the Yanshanian, that is, 140-135 Ma. The switch is concretely the change from the approximate E-W Paleo-Asian tectonic system to the NE to NNE Pacific system, and the period is also the apex of a continent-continent collision and orogenesis of subduction, being consumed and eventually disappearing of the Paleo-Pacific ancient continent, and all the processes commenced in the Indosinian. While the following post-orogenic large-scale eruption in the Early Cretaceous marks the final completeness of the Paleo-Pacific structure dynamics system.展开更多
The subduction of the Bangonghu-Nujiang Meso-Tethys and the collision between the Lhasa and Qiangtang blocks were important events in the growth of the Tibetan crust. However, the timing of collision initiation and cl...The subduction of the Bangonghu-Nujiang Meso-Tethys and the collision between the Lhasa and Qiangtang blocks were important events in the growth of the Tibetan crust. However, the timing of collision initiation and closure timing, as well as nature and structure of the Bangonghu ocean basin, are still poorly constrained. The Lagkor Tso ophiolite, located in the south of Gerze County, Tibet, is one of the most completed ophiolites preserved in the southern side of the Bangonghu- Nujiang suture zone. This study discussed the tectonic evolution of the Bangonghu-Nujiang suture zone as revealed by the Lagkor Tso ophiolite investigated by field investigations, petrology, geochemistry, geochronology and tectonic analysis methods. We present new LA-ICP-MS zircon U-Pb and 39Ar/4~Ar ages for the Lagkor Tso ophiolite, in addition to geochemical and platinum-group element (PGE) data presented for the Lagkor Tso ophiolite in Tibet. It is suggested that the ancient Lagkor Tso oceanic basin split in Middle Jurassic (161.2 ± 2.7 Ma - 165.4 ± 3.5 Ma), and experienced a second tectonic emplacement during the Early Cretaceous (137.90 ± 6.39 Ma). The Lagkor Tso ophiolite likely developed in an independent suture zone. The Bangonghu-Nujiang ocean subducted southwards, and the dehydration of the subducting oceanic crust materials caused partial melting of the continental mantle wedge, which formed the second-order expanding center of the obduction dish. This led to inter-arc expansion, followed by the formation of inter-arc and back-arc basins with island arc features, which are represented by ophiolites around the Shiquanhe-Lagkor Tso -Yongzhu region. The tectonic environment presently can be considered to be similar to that of the current Western Pacific, in which a large number of island arc-ocean basin systems are developed.展开更多
A high-angle ductile thrusting deformation with top-to-the-north movement penetratively developed in the Proterozoic-Early Paleozoic metamorphic rocks along the Central East Kunlun belt. The deformed rocks suffered ep...A high-angle ductile thrusting deformation with top-to-the-north movement penetratively developed in the Proterozoic-Early Paleozoic metamorphic rocks along the Central East Kunlun belt. The deformed rocks suffered epidote-amphibolite facies metamorphism. On the basis of our previous study, we present more data in this paper to further support that the ducdle thrust deformation occurred in the later Caledonian and more detailed information about the deformation. A zircon U-Pb concordant age of 446±2.2 Ma of a deformed granodiorite in the ductile thrust zone was obtained and can be interpreted as the lower limit of the deformation. A syntectonically crystallized and also strongly deformed hornblende Ar/ Ar dating gives an Ar/Ar plateau age of 426.5±3.8 Ma, which represents the deformation age. A strongly orientated muscovite gives an Ar/Ar plateau age of 408±1.6Ma, representing the cooling age after the peak temperature, constraining the upper limit of the ductile thrust deformation. This ductile thrust deformation can be interpreted as the result of the closing of the Central East Kunlun archipelago ocean. To the north, Ar/Ar plateau ages of 382.9±0.2 Ma and 386.8±0.8 Ma of muscovite in the deformed Xiaomiao Group represent the uplift cooling ages of deeper rocks after the thrusting movement. The original thrusting foliation has a low angle. A rotation model was put forward to explain the development of the foliation from the original low-angle to present high-angle dipping.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42262026,42072259).
文摘The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In this study,alongside thermochronological analyses,we examine the macroscopic and microscopic structural features of the Rongxian ductile shear zone,located south of the Darongshan granite in the southeastern part of Guangxi Province,on the southern margin of South China.Sinistral shear is indicated by the characteristics of rotatedσ-type feldspar porphyroclasts,stretching lineations defined by elongated quartz grains and the orientations of quartz c-axes.LA-ICP-MS U-Pb dating of zircons from two samples of granitic mylonite and one of granite yielded ages of ca.256 Ma.Furthermore,two samples of granitic mylonite yield muscovite^(40)Ar/^(39)Ar plateau ages of 249-246 Ma.These results indicate that the Rongxian ductile shear zone resulted from Early Triassic deformation of the late Permian Darongshan granite.This deformation was likely related to the closure of the eastern Paleo-Tethys Ocean and the subsequent collision of the South China and Indochina blocks,during the early stage of the Indosinian orogeny.
基金granted by Opening Foundation of State Key Laboratory of Continental Dynamics(Grant No.21LCD08),Northwest University。
文摘The magma sources,origins and precise forming ages of the miarolite from Qishan and Kuiqi intrusions are still uncertain.New results reveal that,miarolites from the Qishan and Kuiqi intrusions yield crystallization ages of~101 and~98 Ma,and they have a high formation temperature(~910℃)and low oxygen fugacity value,indicating crystallization condition at low pressure in the upper crust with temperature of 678℃.The Qishan and Kuiqi miarolites are characterized by enrichment in SiO_(2) and high-K alkali,depletion in Ca and Mg,and belong to the high-K weak peraluminous rock series.The samples are enriched in HFSEs(i.e.,Ta,Zr and Hf)and LILEs(i.e.,Ba,P and Sr),depleted in Ba and Sr with the negative anomaly of Eu.In the primitive mantle normalized trace element spider diagram,the samples show a right-inclined‘seagull-type’pattern,combined the ratios of(La/Yb)_(N),10000×Al/Ga,Rb/Nb and Nb/Ta etc.,they were proved to be alkaline A-type granite.Combined the characterize of the trace elements,they were derived from clay-rich source accompanied pelite melting,and subjected to K-feldspar crystallization fractional.The values of ε_(Hf)(t)and tDM2 are distributed in the range of-2.8 to 3.3 with~1.2 Ga,and-6.0 to 4.0 with~1.2 Ga,revealing that they were generated from the Mesoproterozoic Cathaysia basement rocks.The comprehensive research reveals the Kuiqi and Qishan intrusions derived from crust-mantle mixing and partial melting of the crust,respectively,resulting from lithospheric extension generated by the Paleo-Pacific Plate subducted into the European-Asian Plate.
基金funded by the National Natural Science Foundation of China (2019M653840XB)the National Natural Science Foundation of China (41972043 and 42062006)。
文摘Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
基金funded by the National Natural Science Foundation of China(41872232)the Beijing Geological Survey Project(PXM 2016-158203-000008,PXM 2018-158203-000014)the Beijing Innovation Studio(Urban Geology,Active Structure,and Monitoring).
文摘The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.
基金supported by the Central Public Welfare Scientific Research Basic Scientific Research Business Expenses(Grant Nos.KK2005,KY1603)National Natural Science Foundation of China(Grant No.U20A2092)+1 种基金the National Basic Research Program of China(973 Program)(Grant No.2011CB403007)the China Geological Survey(Grant No.DD20190606)。
文摘Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism remains unclear.In this study,U-Pb geochronology,geochemistry,fluid inclusion and C-O isotopic compositions of hydrothermal vein minerals in the Jiangling Basin are examined.Laser ablation U-Pb dating of calcite veins indicates that the ages are slightly younger than the formation age of the Balingshan basalt.Fluid inclusions in hydrothermal minerals show medium–low homogenization temperatures(160–220℃)and low salinities(0.14 to 4.9 wt%NaCl eqv.)and densities(0.882–0.944 g/cm^(3)).The liquid compositions of fluid inclusions in calcite veins from sedimentary strata have higher contents of potassium,compared with those from basalt.The coupled negativeδ^(13)CPDB(-10.3‰to-8.0‰)and positiveδ^(18)OSMOW(17.4‰to 20.7‰)values imply that calcite precipitation resulted from CO_(2)degassing of the basaltic magmatic fluids,as indicated by the gas composition of these inclusions in hydrothermal minerals.Rare earth element patterns indicate that water-rock interaction between hydrothermal fluids and sedimentary wall rocks contributed to the calcite precipitation in sedimentary strata.It is proposed that high-temperature water-rock interaction between magmatic fluids and sedimentary strata resulted in the potassium enrichment in fluids,interpreted as one of the sources of potassium-rich brines in the Jiangling Basin.
基金granted by National Natural Science Foundation of China(Grant No.42172103)China Geological Survey(DD20221645)Hubei Geological Bureau(KJ2023-11,KCDZ2022-06,KCDZ2023-01)。
文摘To better understand the Paleo-to Mesoproterozoic tectonic evolution of the Dabie Orogen in the northern margin of Yangtze Block,we present geochronological data for metasedimentary and metavolcanic rocks in the Huwan complex.A total of 385 detrital zircon LA-ICP-MS analyses for metasedimentary rocks yielded three^(207)Pb/^(206)Pb age populations:1.50-1.80 Ga,1.81-1.87 Ga and 1.93-2.0 Ga,providing a maximum depositional timing of ca.1.50 Ga;while metafelsic volcanic gneisses yielded protolith U-Pb ages of 1893±54 Ma.The peak ages are remarkably consistent with the tectonothermal events that occurred in the northern Yangtze Block,indicating the presence of Paleo-to Mesoproterozoic magmatism in the Dabie Orogen.The age range of 1.93-2.0 Ga correlates with the Paleoproterozoic collision;the age range of 1.81-1.87 Ga coincides with the period of the post-orogenic extension;and the age range of 1.50-1.80 Ga is interpreted to associate with an extensional regime.Zircon cores with age of 1732-1965 Ma haveε_(Hf)(t)values ranging from-11.70 to-2.47,indicating that juvenile crust involved in their magma sources.Owing to the similar age spectra,we proposed that the nucleus of the Dabie Orogen was close to the Yangtze Block since the Paleoproterozoic.The Huwan complex has an intimate affiliation to the Yangtze Block,and implies multiple orogenic cycles.It was not only experienced the Paleo-Tethys ocean subduction and collision,but also recorded Paleo-to Mesoproterozoic tectono-magmatic events in the Dabie Orogen.
基金financially supported by the China Geological Survey(Grant Nos.DD20230229,DD20160083,DD20190011,DD20221643-5)the National Key Research and Development Program of China(the DREAM—Deep Resource Exploration and Advanced Mining+1 种基金Grant No.2018YFC0603701)the Cooperative Project between the Chinese Academy of Geological Sciences and the Sinopec Shengli Oilfield Company(Grant No.P22065)。
文摘The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies emphasize the Cenozoic deformation due to the far-field response to the Indo-Asian collision,but the Mesozoic deformations are poorly constrained in this area.We conducted detailed field mapping,structural analysis,geochronology,and structural interpretation of deep seismic reflectional profiling and magnetotelluric(MT)sounding,to address the superposed results of the Mesozoic and Cenozoic deformation.The results recognized the North Qilian thrust and nappe system(NQTS),the root and the frontal belt are the North Qilian thrust(NQT),and the Yumu Shan klippe(YK),respectively.The middle belt is located between the NQT and the YK.Monzonitic granite zircon U-Pb dating from the middle belt yields an age of ca.415 Ma,which is similar to south NQT.The thrusting displacement is estimated at ca.48 km by structural interpretation of deep profiles.The timing is constrained in the early stage of the Early Cretaceous by the formation of simultaneous growth strata.We suggest that the NQTS has resulted from the far-field effect of the Lhasa-Qiangtang collision,and the Yumu Shan is uplifted by the superposed Cenozoic deformation.
基金supported by the Open Fund for Sanjiang Key Laboratory of Mineralization and Resource Exploration and Utilization,Ministry of Natural Resources(ZRZYBSJSYS2021002)Yunnan Major Scientific and Technological Projects(Grant No.202202AG050006)+2 种基金the National Natural Science Foundation of China(No.41772070)supported by the National Research Center of Geoanalysis(NRCG)Chinese Academy of Geological Sciences(CAGS)。
文摘The Late Paleozoic and Mesozoic tectonic framework of the Nanpanjiang Basin has much been disputed.Herein,the middle-acid volcanic rock,dacite,exposed to the Zhesang gold district,southeast Yunnan Province,has been analyzed.The results show that the dacite belongs to a calc-alkaline series,SiO_(2)contents range from 62.79 to 76.66 wt%.Zircon SHRIMP U–Pb dating of dacite demonstrates that they were formed in the Early Triassic(247.8±1.7 Ma,MSWD=1.2).All samples exhibit enrichment in LILE(e.g.Rb,K,Th,and U),and depletion in HFSE(e.g.Nb,Ta,and Ti),which has the geochemical affinity of I-type granite.La–La/Sm and La–La/Yb discrimination diagrams show that the partial melting,mainly of the mafic lower crust,of rocks,plays a major role in the formation process.The dacite has low initial ^(87)Sr/^(86)Sr ratios(0.706954 to 0.708589)and negative ε_(Nd)(t)values(-11.77 to-10.88).Zircons in dacite have ε_(Hf)(t)values of-16.2 to-8.3,and the two-stage Hf model ages are 1799–2301 Ma,mostly concentrated between 1800 and 1900 Ma,indicating that the magma source area is the reconstructed ancient lower crust mixed with some mantle materials,and crystal fractionation process underwent in the late stage of magma migration.This study reveals that the arc-volcanic rocks of the Early Triassic in the southern margin of the Nanpanjiang Basin were formed by the subduction of the Late Paleozoic ocean basin within the border region between China and Vietnam.
基金jointly funded by the National Natural Science Foundation of China(Grant Nos.42202085,42272080)China Postdoctoral Science Foundation(Grant Nos.2020M680666,2021T140660)+1 种基金postdoctoral program of China Scholarship Council(Grant No.202104910161)National Key Research and Development Program of China(Grant No.2017YFC0601305)。
文摘Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate sulfidation epithermal deposits are rarely deciphered due to the lack of appropriate approaches to determine fO_(2)of the fluids.Here,we reported theδ^(34)S of the sulfides from three different stages(stageⅠ,Ⅱ,Ⅲ)of Zhengguang,an Early Ordovician Au-rich intermediate sulfidation(IS)epithermal deposit,to decipher the redox evolution of the ore-forming fluids.The increasingδ^(34)S values from stageⅠpyrite(pyl,average-2.6‰)through py2(average-1.9‰)to py3(average-0.2‰)indicates a decrease of the oxygen fugacity of the ore-forming fluids.A compilation ofδ^(34)S values of sulfides from two subtypes of IS deposits(Au-rich and Ag-rich)from NE China shows that theδ^(34)S values of sulfides from Au-rich IS deposits are systematically lighter than those of Ag-rich IS Ag-Pb-Zn deposit,indicating the ore-forming fluids of the former are more oxidized than the latter.We highlight that sulfur isotopic composition of hypogene sulfides is an efficacious proxy to fingerprint the oxygen fugacity fluctuations of epithermal deposits and could potentially be used to distinguish the subtypes of IS deposits.
基金supported by the NSFC Project(Grant Nos.42162012 and 42072094)the Open Research Project from the Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization,MNR(Grant No.ZRZYBSJSYS2022001)。
文摘The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization are present in the Dahongshan deposit:(1)early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide(pyrite and chalcopyrite)hosted in the Na-rich metavolcanic rocks;(2)late hydrothermal(-vein)type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults.While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit,data related to late hydrothermal mineralization is lacking.In order to establish the metallogenic age and ore-forming material source of the late hydrothermal(-vein)type mineralization,this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H,O,S,and Pb isotopic compositions of the hydrothermal quartz-sulfide veins.The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody.Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831±11 Ma,indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic.The molybdenite has a Re concentration of 99.7-382.4 ppm,indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle.The δ^(34)S values of sulfides from the hydrothermal ores are 2‰-8‰ showing multi-peak tower distribution,suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock.Furthermore,the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores,which may be related to the later hydrothermal transformation.The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water.These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event,which might be related to the breakup of the Rodinia supercontinent.Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal(-vein)type Fe-Cu orebodies by filling and metasomatism.
基金financially supported by the Geological Survey program of China Geological Survey(Grant Nos.DD20189613,12120115031301)National Key Research and Development Program of China(Grant No.2019YFC0605202)。
文摘To the south of Manzhouli,Hulunbuir,Inner Mongolia,experienced a tectonic regime transformation from compression to extension in the mid-Mesozoic.Based on systematic research of the volcanics,petrology,volcanic facies,chronology and geochemistry of rocks in the Buridun area,two stages of volcanics are identified.The first stage named the trachyte series was formed in the late Middle Jurassic(167-163 Ma),its eruption rhythm is pyroxene trachyandesite-trachyandesite-trachyte,and its origin rock is basic volcanics from thickened lower crust,with a tectonic setting in the collision orogeny after the closure of the Mongolia Okhotsk Ocean(MOO).The second stage is a bimodal volcanic rock,formed in the early Late Jurassic(163-160 Ma).The eruption rhythm of basic volcanics in this stage is basaltic andesite-basalt-olivine basalt,which comes from the metasomatized lithospheric mantle,the acidic volcanics of which being characterized by the eruption rhythm of sedimentary-explosive-overflow facies,which came from the partial melting of newly formed lower crust,and this shows the characteristics of A-type granite;the tectonic setting is extension of the lithosphere after collision and closure of the MOO.The changes in the formation age and tectonic setting of the two stages of volcanics demonstrate that the transition time from the compressive system to the extensional system south of Manzhouli is about 163 Ma.
基金funded by two Second Tibetan Plateau Comprehensive Scientific Investigation and Research Projects(2019QZKK0702,2019QZKK0706)a project of National Natural Science Foundation of China(42230311)two geological survey projects of China Geological Survey(DD20221635,DD20221811).
文摘As one of the important Paleo-Tethys suture zones in eastern Tibet,the Jinshajiang orogenic belt is of great significance to study the tectonic evolution of the main suture zone of Paleo-Tethys.In this paper,eclogites developed in the Jinshajiang suture zone in Gonjo area,eastern Tibet,are selected as specific research objects,and petrological,geochemical and Ar-Ar geochronological analyses are carried out.The major element data of the whole rock reveals that the eclogite samples have the characteristics of picritic basalt-basalt and belong to the oceanic low potassium tholeiites.The results of rare earth elements and trace elements of the samples show that the protoliths of eclogites have characteristics similar to oceanic island basalt(OIB)or normal mid ocean ridge basalt(N-MORB).Muscovite(phengite)from two eclogite samples yield the Ar-Ar plateau ages of 247±2 Ma and 248±2 Ma respectively,representing the peak metamorphic age of eclogite facies and the timing of complete closure of the Jinshajiang Paleo-Tethys Ocean.Muscovite and biotite selected from the hosting rocks of eclogite yield the Ar-Ar plateau ages are 238±2 Ma and 225±2 Ma respectively,reflecting the exhumation age of eclogites and their hosting rocks.Combined with the zircon U-Pb dating data(244 Ma)of eclogites obtained in previous work,it can be concluded that the Jinshajiang Paleo-Tethys ocean was completely closed and arc-continent collision was initiated at about 248-244 Ma(T21).Subsequently,due to the large-scale arc(continent)-collision orogeney between Deqin-Weixi continental margin arc and Zhongza block(T31-T32),the eclogites were rapidly uplifted to the shallow crust.
基金Supported by Project of National Natural Science Foundation of China(No.41872234)。
文摘Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain their genesis and tectonic significance.Zircon LA-ICP-MS U-Pb data indicate that the rhyolite and rhyolitic lithic crystal tuff were formed during 137±5 Ma and 143±1 Ma,respectively.These volcanic rocks have high SiO2(70.03%–76.46%)and K2O+Na2O(8.10%–9.52%)contents,but low CaO(0.03%–0.95%)and MgO(0.07%–0.67%)contents,which belong to the peraluminous and high-K calc-alkaline rocks.They are enriched in light rare earth elements(REEs),and exhibit fractionation of light over heavy REEs,withδEu values of 0.37–0.83.The volcanic rocks are enriched in LILEs(e.g.,Rb,U and K)and depleted in HFSEs(e.g.,Nb,Ti,P and Ta).The chemical composition suggests that these volcanic rocks formed by partial melting of crust material.Combined with previous regional research results,the authors consider that the volcanic rocks of the Manketouebo Formation in the Keyihe area were formed under an extensional environment related to the closure of the Mongolia–Okhotsk Ocean.
文摘This paper reviews the basic principles of radiometric geochronology as implemented in a new software package called Isoplot R, which was designed to be free, flexible and future-proof. Isoplot R is free because it is written in non-proprietary languages(R, Javascript and HTML) and is released under the GPL license. The program is flexible because its graphical user interface(GUI) is separated from the command line functionality, and because its code is completely open for inspection and modification. To increase future-proofness, the software is built on free and platform-independent foundations that adhere to international standards, have existed for several decades, and continue to grow in popularity.Isoplot R currently includes functions for U-Pb, Pb-Pb,40 Ar/39 Ar, Rb-Sr, Sm-Nd, Lu-Hf, Re-Os, U-Th-He,fission track and U-series disequilibrium dating. It implements isochron regression in two and three dimensions, visualises multi-aliquot datasets as cumulative age distributions, kernel density estimates and radial plots, and calculates weighted mean ages using a modified Chauvenet outlier detection criterion that accounts for the analytical uncertainties in heteroscedastic datasets. Overdispersion of geochronological data with respect to these analytical uncertainties can be attributed to either a proportional underestimation of the analytical uncertainties, or to an additive geological scatter term.Isoplot R keeps track of error correlations of the isotopic ratio measurements within aliquots of the same samples. It uses a statistical framework that will allow it to handle error correlations between aliquots in the future. Other ongoing developments include the implementation of alternative user interfaces and the integration of Isoplot R with other data reduction software.
文摘Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablation and secondary ionization mass spectrometry) has allowed for large amounts of data to be generated in a relatively short amount of time and such large volume datasets offer the ability to address a range of geological questions that would otherwise remain intractable (e.g. detrital zircons as a sedi- ment fingerprinting method). The ease of acquisition, while bringing benefit to the Earth science com- munity, has also led to diverse interpretations of geochronological data. In this work we seek to refocus U -Pb zircon geochronology toward best practice by providing a robust statistically coherent workflow. We discuss a range of data filtering approaches and their inherent limitations (e.g. discordance and the reduced chi-squared; MSWD). We evaluate appropriate mechanisms to calculate the most geologically appropriate age from both 238U/206pb and 207pb/206pb ratios and demonstrate the cross over position when chronometric power swaps between these ratios. As our in situ analytical techniques become progressively more precise, appropriate statistical handing of U-Pb datasets will become increasingly pertinent.
文摘A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post-orogenic extension from outer orogenic zone to inner part (or collision zone). The determination of the eruption age of the volcanics of the Zhangjiakou Formation definitely constrains the switch period, which began in the Indosinian and finished in the Yanshanian, that is, 140-135 Ma. The switch is concretely the change from the approximate E-W Paleo-Asian tectonic system to the NE to NNE Pacific system, and the period is also the apex of a continent-continent collision and orogenesis of subduction, being consumed and eventually disappearing of the Paleo-Pacific ancient continent, and all the processes commenced in the Indosinian. While the following post-orogenic large-scale eruption in the Early Cretaceous marks the final completeness of the Paleo-Pacific structure dynamics system.
基金supported by the National Nature Science Foundation of China (grant No.41372208)China Geological Survey (grant No.1212011221105 and 1212011121259)
文摘The subduction of the Bangonghu-Nujiang Meso-Tethys and the collision between the Lhasa and Qiangtang blocks were important events in the growth of the Tibetan crust. However, the timing of collision initiation and closure timing, as well as nature and structure of the Bangonghu ocean basin, are still poorly constrained. The Lagkor Tso ophiolite, located in the south of Gerze County, Tibet, is one of the most completed ophiolites preserved in the southern side of the Bangonghu- Nujiang suture zone. This study discussed the tectonic evolution of the Bangonghu-Nujiang suture zone as revealed by the Lagkor Tso ophiolite investigated by field investigations, petrology, geochemistry, geochronology and tectonic analysis methods. We present new LA-ICP-MS zircon U-Pb and 39Ar/4~Ar ages for the Lagkor Tso ophiolite, in addition to geochemical and platinum-group element (PGE) data presented for the Lagkor Tso ophiolite in Tibet. It is suggested that the ancient Lagkor Tso oceanic basin split in Middle Jurassic (161.2 ± 2.7 Ma - 165.4 ± 3.5 Ma), and experienced a second tectonic emplacement during the Early Cretaceous (137.90 ± 6.39 Ma). The Lagkor Tso ophiolite likely developed in an independent suture zone. The Bangonghu-Nujiang ocean subducted southwards, and the dehydration of the subducting oceanic crust materials caused partial melting of the continental mantle wedge, which formed the second-order expanding center of the obduction dish. This led to inter-arc expansion, followed by the formation of inter-arc and back-arc basins with island arc features, which are represented by ophiolites around the Shiquanhe-Lagkor Tso -Yongzhu region. The tectonic environment presently can be considered to be similar to that of the current Western Pacific, in which a large number of island arc-ocean basin systems are developed.
文摘A high-angle ductile thrusting deformation with top-to-the-north movement penetratively developed in the Proterozoic-Early Paleozoic metamorphic rocks along the Central East Kunlun belt. The deformed rocks suffered epidote-amphibolite facies metamorphism. On the basis of our previous study, we present more data in this paper to further support that the ducdle thrust deformation occurred in the later Caledonian and more detailed information about the deformation. A zircon U-Pb concordant age of 446±2.2 Ma of a deformed granodiorite in the ductile thrust zone was obtained and can be interpreted as the lower limit of the deformation. A syntectonically crystallized and also strongly deformed hornblende Ar/ Ar dating gives an Ar/Ar plateau age of 426.5±3.8 Ma, which represents the deformation age. A strongly orientated muscovite gives an Ar/Ar plateau age of 408±1.6Ma, representing the cooling age after the peak temperature, constraining the upper limit of the ductile thrust deformation. This ductile thrust deformation can be interpreted as the result of the closing of the Central East Kunlun archipelago ocean. To the north, Ar/Ar plateau ages of 382.9±0.2 Ma and 386.8±0.8 Ma of muscovite in the deformed Xiaomiao Group represent the uplift cooling ages of deeper rocks after the thrusting movement. The original thrusting foliation has a low angle. A rotation model was put forward to explain the development of the foliation from the original low-angle to present high-angle dipping.