To better understand the physicochemical conditions in af fecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3 rd and 23 th May, 2010. ...To better understand the physicochemical conditions in af fecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3 rd and 23 th May, 2010. The phytoplankton community, including Bacillariophyta(105 taxa), Pyrrophyta(54 taxa), Chrysophyta(1 taxon) and Chlorophyta(2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.展开更多
The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an import...The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an important component of the giant tectonic belt in central China (the Kunlun-Qilian-Qinling Tectonic Belt or the Central Orogenic Belt). Many known ore-forming belts such as the Kunlun-Qilian Qinling ore-forming zone, Sanjiang (or Three river) ore-forming zone, Central Asian ore-forming zone, etc. pass through the West Kunlun area. Three ore-forming zones and seven ore-forming subzones were classified, and eighteen mineralization areas were marked. It is indicated that the West Kunlun area is one of the most favorable region for finding out large and superlarge ore deposits.展开更多
The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed tha...The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.展开更多
On the basis of mineral paragenesis and the chemistry and homogenization temperatures of fluid inclusions,the physicochemical parameters were calculated for the formation of the Dalingkou Ag-Pb-Zu deposit in Zhejiang....On the basis of mineral paragenesis and the chemistry and homogenization temperatures of fluid inclusions,the physicochemical parameters were calculated for the formation of the Dalingkou Ag-Pb-Zu deposit in Zhejiang.From the early to the late stage of mineralization the ore-forming temperature veriation was found to be 298.5 ℃→267.0℃→217.6℃→167.3℃,with a corresponding pH change of 3.0-5.8→6.1→6.7→5.0→7.3.The pressure changed from 403.8to 128.5atm,and logfS2-9.9→-11.2→<-15;logfO2<-44→-45.6--42.6→>-44.2;and logf CO2 around -1.55.In conjunction with geological observations.the deposit is considered to be of meso-epithermal origin,i.e.,it was formed after continental volcanic-subvolcanic activity.The major factors affecting ore precipitation are the decreasing temperature and the increasing pH of ore-forming solutions.展开更多
There are few Au-Pb-Quartz vein type ore deposits in other countries except China. It might be related to the geohistory and geotectonic background. However, this kind of ore deposit has an important economical signif...There are few Au-Pb-Quartz vein type ore deposits in other countries except China. It might be related to the geohistory and geotectonic background. However, this kind of ore deposit has an important economical significance in China. Its formation is due to the dis-tinctive geological conditions of china. Wendong Au-Pb-Quartz type ore deposit including Wenyu and Dongchuang in Xiaoqinling gold field is the most typical. It is a polygenetic and compound ore deposit, Jintongcha and other deposits lying to the west of it in Xiaoqinling area are Au-Pb-Quartz vein type ore deposits. Others of this area lying to the east of Jintongcha are Au-Quartz vein type. This phenomenon stems from the zonnal distribution of minernal de-posits and the different development of the two major minernalzation stages. The results ob-tained from the fluid inclusion research have supported this inference.展开更多
The di-aromatics base oil and graphite powder,blended with the viscosity index improver,and the anti-oxidant and rheological additive,were used to prepare a kind of anti-seize thread lubricant.Its physical chemistry p...The di-aromatics base oil and graphite powder,blended with the viscosity index improver,and the anti-oxidant and rheological additive,were used to prepare a kind of anti-seize thread lubricant.Its physical chemistry properties,such as water resistance,thermal oxidation and aging properties,and tribological performance,were evaluated and compared with those of some commercial products.The results show that the overall performance of the anti-seize thread lubricant could meet the level of some commercial products,while its some properties such as thermal stability,anti-wear and anti-friction properties were better.The said anti-seize thread lubricant is more suitable for use under high temperature conditions.展开更多
The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined. The tot...The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined. The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method. Another EPS extraction method, the ceutrifugation and sonication technique was employed to stratify the EPS into three fractions: slime, loosely bound (LB)-EPS, and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge. Proteins and polysaccharides were dispersed uniformly across the different EPS fractions, and humic-like substances were mainly partitioned in the slime, with TB-EPS second. Protein was the major constituent of the LB-EPS and TB-EPS, and the corresponding ratios ranged from 54.0% to 65.6%. The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA, while the hydrophilic part was mainly composed of polysaccharide. In the slime, the hydrophobic values of several EPS chemical components (protein, polysaccharide, humic-like substances and DNA) were all below 50%. The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS: the greater the protein/polysaccharide ratio of the EPS was, the greater the Zeta potential and the higher the isoelectric point value were. All Zeta potentials of the EPS showed a decreasing trend with increasing pH. The corresponding isoelectric point values (pH) were 2.8 for total EPS, 2.2 for slime, 2.7 for LB-EPS, and 2.6 for TB-EPS. As the ionic strength increased, the Zeta potentials sharply increased and then gradually became constant without charge reversal. In addition, as the temperature increased (〈 40℃), the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60℃.展开更多
New data on a zonal structure of the Koupol deposit fahlores grains are given, and features of their chemism are shown. The fahlores chemical composition within the zones evolves from essentially arsenious (Fe-tennan...New data on a zonal structure of the Koupol deposit fahlores grains are given, and features of their chemism are shown. The fahlores chemical composition within the zones evolves from essentially arsenious (Fe-tennantite and Zn-tennantite), through mixed fahlores (Zn-tennantitetetrahedrite arsenious and Zn-tennantite-tetrahedrite antimonous), to essential antimonous (Ag-bearing Zn-tetrahedrite). Varying chemical composition manifested as mineralogical-geochemical zonation of the fahlores grains is caused by changes of physicochemical conditions of the ore forming process during the time.展开更多
To improve the start-up speed and efficiency of bioreactors, biofilm technology is sometimes used. This technology uses various types of materials to facilitate the adhesion of microorganisms. In this study, the surfa...To improve the start-up speed and efficiency of bioreactors, biofilm technology is sometimes used. This technology uses various types of materials to facilitate the adhesion of microorganisms. In this study, the surface characteris<span style="font-family:Verdana;">tics of inert substrates and substrates after olive oil-mill wastewater (OMWW)</span><span style="font-family:Verdana;"> conditioning film were evaluated to understand the impact of OMWW on adhesion as well as the most suitable material to optimize bacterial adhesion. Three common substrates made of different polymers were tested for bacterial adhesion before and after treatment with OMWW: PP (polypropylene), PET (Polyethylene terephthalate), and PVC (polyvinyl chloride). The </span><span style="font-family:Verdana;">surfaces’ physicochemical characteristics were studied by measuring the contact angle for the studied bacteria strain and the supports, before and after treatment with OMWW. Results of initial adhesion tests for untreated and treated supports showed differences in how bacterial cells adhered to substrates. Before treatment with OMWW, PVC and then PP showed a significant adhesion capacity, double that of PET [PVC: 1.58</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, PP: 1.48</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and PET: 0.72</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">]. After treatment with OMWW, initial bacterial adhesion increased by 10</span><sup><span style="font-family:Verdana;">6</span></sup><span style="font-family:Verdana;"> (from 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> for untreated supports to 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> for treated supports), and PET followed by PP demonstrated the highest adhesion capacity, 2 and 1.7 times more than PVC, respectively [PET: 1.39</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, PP: 1.15</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and PVC: 0.67</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">].</span><a name="_Hlk36219009"></a><span style="font-family:Verdana;"> OMWW conditioning film affects the physicochemical characteristics of plastic supports, especially the donor electron character, and improves the initial adhesion of bacteria to substrates (10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> to 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">). Therefore, surfaces’ physicochemical characteristics were important in the initial adhesion of the bacteria onto the support before and after treatment.</span></span>展开更多
The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization origi...The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.展开更多
基金Supported by the National Key Scientifi c Research Program(No.2015CB954002)the National Natural Science Foundation of China(Nos.41276124,41676112)+2 种基金the University Innovation Team Training Program for Tianjin(No.TD12-5003)the Cheung Kong Scholars Program and of ChinaExploration Program of Ocean with Science and Technology of Tianjin(KJXH2013-22)to Jun Sun
文摘To better understand the physicochemical conditions in af fecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3 rd and 23 th May, 2010. The phytoplankton community, including Bacillariophyta(105 taxa), Pyrrophyta(54 taxa), Chrysophyta(1 taxon) and Chlorophyta(2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.
文摘The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an important component of the giant tectonic belt in central China (the Kunlun-Qilian-Qinling Tectonic Belt or the Central Orogenic Belt). Many known ore-forming belts such as the Kunlun-Qilian Qinling ore-forming zone, Sanjiang (or Three river) ore-forming zone, Central Asian ore-forming zone, etc. pass through the West Kunlun area. Three ore-forming zones and seven ore-forming subzones were classified, and eighteen mineralization areas were marked. It is indicated that the West Kunlun area is one of the most favorable region for finding out large and superlarge ore deposits.
基金National Natural Science Foundation of China(No.32260643)for financial support of this study。
文摘The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.
文摘On the basis of mineral paragenesis and the chemistry and homogenization temperatures of fluid inclusions,the physicochemical parameters were calculated for the formation of the Dalingkou Ag-Pb-Zu deposit in Zhejiang.From the early to the late stage of mineralization the ore-forming temperature veriation was found to be 298.5 ℃→267.0℃→217.6℃→167.3℃,with a corresponding pH change of 3.0-5.8→6.1→6.7→5.0→7.3.The pressure changed from 403.8to 128.5atm,and logfS2-9.9→-11.2→<-15;logfO2<-44→-45.6--42.6→>-44.2;and logf CO2 around -1.55.In conjunction with geological observations.the deposit is considered to be of meso-epithermal origin,i.e.,it was formed after continental volcanic-subvolcanic activity.The major factors affecting ore precipitation are the decreasing temperature and the increasing pH of ore-forming solutions.
文摘There are few Au-Pb-Quartz vein type ore deposits in other countries except China. It might be related to the geohistory and geotectonic background. However, this kind of ore deposit has an important economical significance in China. Its formation is due to the dis-tinctive geological conditions of china. Wendong Au-Pb-Quartz type ore deposit including Wenyu and Dongchuang in Xiaoqinling gold field is the most typical. It is a polygenetic and compound ore deposit, Jintongcha and other deposits lying to the west of it in Xiaoqinling area are Au-Pb-Quartz vein type ore deposits. Others of this area lying to the east of Jintongcha are Au-Quartz vein type. This phenomenon stems from the zonnal distribution of minernal de-posits and the different development of the two major minernalzation stages. The results ob-tained from the fluid inclusion research have supported this inference.
基金The authors gratefully acknowledge the financial support from the National Science and Technology for Major Project of China(Project No.2019ZX06004002).
文摘The di-aromatics base oil and graphite powder,blended with the viscosity index improver,and the anti-oxidant and rheological additive,were used to prepare a kind of anti-seize thread lubricant.Its physical chemistry properties,such as water resistance,thermal oxidation and aging properties,and tribological performance,were evaluated and compared with those of some commercial products.The results show that the overall performance of the anti-seize thread lubricant could meet the level of some commercial products,while its some properties such as thermal stability,anti-wear and anti-friction properties were better.The said anti-seize thread lubricant is more suitable for use under high temperature conditions.
基金supported by the Fundamental Research Funds for the Central University (No.JC2011-1,TD2010-5)the National Natural Science Foundation of China(No. 51078035, 21177010)the Ph.D Programs Foundation of the Ministry of Education of China (No.20100014110004)
文摘The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined. The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method. Another EPS extraction method, the ceutrifugation and sonication technique was employed to stratify the EPS into three fractions: slime, loosely bound (LB)-EPS, and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge. Proteins and polysaccharides were dispersed uniformly across the different EPS fractions, and humic-like substances were mainly partitioned in the slime, with TB-EPS second. Protein was the major constituent of the LB-EPS and TB-EPS, and the corresponding ratios ranged from 54.0% to 65.6%. The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA, while the hydrophilic part was mainly composed of polysaccharide. In the slime, the hydrophobic values of several EPS chemical components (protein, polysaccharide, humic-like substances and DNA) were all below 50%. The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS: the greater the protein/polysaccharide ratio of the EPS was, the greater the Zeta potential and the higher the isoelectric point value were. All Zeta potentials of the EPS showed a decreasing trend with increasing pH. The corresponding isoelectric point values (pH) were 2.8 for total EPS, 2.2 for slime, 2.7 for LB-EPS, and 2.6 for TB-EPS. As the ionic strength increased, the Zeta potentials sharply increased and then gradually became constant without charge reversal. In addition, as the temperature increased (〈 40℃), the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60℃.
基金supported by the President of the Russian Federation (No. 5162.2010.5)the Federal Program of Russia(No.02.740.11.0723)
文摘New data on a zonal structure of the Koupol deposit fahlores grains are given, and features of their chemism are shown. The fahlores chemical composition within the zones evolves from essentially arsenious (Fe-tennantite and Zn-tennantite), through mixed fahlores (Zn-tennantitetetrahedrite arsenious and Zn-tennantite-tetrahedrite antimonous), to essential antimonous (Ag-bearing Zn-tetrahedrite). Varying chemical composition manifested as mineralogical-geochemical zonation of the fahlores grains is caused by changes of physicochemical conditions of the ore forming process during the time.
文摘To improve the start-up speed and efficiency of bioreactors, biofilm technology is sometimes used. This technology uses various types of materials to facilitate the adhesion of microorganisms. In this study, the surface characteris<span style="font-family:Verdana;">tics of inert substrates and substrates after olive oil-mill wastewater (OMWW)</span><span style="font-family:Verdana;"> conditioning film were evaluated to understand the impact of OMWW on adhesion as well as the most suitable material to optimize bacterial adhesion. Three common substrates made of different polymers were tested for bacterial adhesion before and after treatment with OMWW: PP (polypropylene), PET (Polyethylene terephthalate), and PVC (polyvinyl chloride). The </span><span style="font-family:Verdana;">surfaces’ physicochemical characteristics were studied by measuring the contact angle for the studied bacteria strain and the supports, before and after treatment with OMWW. Results of initial adhesion tests for untreated and treated supports showed differences in how bacterial cells adhered to substrates. Before treatment with OMWW, PVC and then PP showed a significant adhesion capacity, double that of PET [PVC: 1.58</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, PP: 1.48</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and PET: 0.72</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">]. After treatment with OMWW, initial bacterial adhesion increased by 10</span><sup><span style="font-family:Verdana;">6</span></sup><span style="font-family:Verdana;"> (from 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> for untreated supports to 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> for treated supports), and PET followed by PP demonstrated the highest adhesion capacity, 2 and 1.7 times more than PVC, respectively [PET: 1.39</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, PP: 1.15</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and PVC: 0.67</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">].</span><a name="_Hlk36219009"></a><span style="font-family:Verdana;"> OMWW conditioning film affects the physicochemical characteristics of plastic supports, especially the donor electron character, and improves the initial adhesion of bacteria to substrates (10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> to 10</span><sup><span style="font-family:Verdana;">11</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">). Therefore, surfaces’ physicochemical characteristics were important in the initial adhesion of the bacteria onto the support before and after treatment.</span></span>
基金financially supported by the project of the China Geological Survey(DD20230292,DD20242591)。
文摘The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.