The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin...Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.展开更多
Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Ch...Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.展开更多
This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- bl...This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- block masses of Qingjiang water conservancyproject, and better results are abtained. The method which isadvanced in the article is very single and practical, and it can meetall kinds of project's demands.展开更多
The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to ma...The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to many factors such as adverse slope geometries, geological discontinuities, weak or weathered slope materials as well as severe weather conditions. External loads like heavy precipitation and seismicity could play a significant role in slope failure. In this paper, several rock mass classification systems developed for rock slope stability assessment are evaluated against known rock slope conditions in a region of Saudi Arabia, where slopes located in rugged terrains with complex geometry serve as highway road cuts. Selected empirical methods have been applied to 22 rock cuts that are selected based on their failure mechanisms and slope materials. The stability conditions are identified, and the results of each rock slope classification system are compared. The paper also highlights the limitations of the empirical classification methods used in the study and proposes future research directions.展开更多
Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that re...Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.展开更多
Stability parameters (Monin-Obukhov length L, gradient Richardson number Ri and bulk Rischardson number Ri), which are applicable in urban environment, were discussed for ways of calculating classification standards. ...Stability parameters (Monin-Obukhov length L, gradient Richardson number Ri and bulk Rischardson number Ri), which are applicable in urban environment, were discussed for ways of calculating classification standards. Gradient observations from a 325-m meteorological tower in Beijing are used to categorize Rib based on three different standards of stability proposed by D. Golder, Irwin and Houghton. The results show that it is relatively reasonable for the region of Beijing to apply the classification standard by Irwin.展开更多
Studies of atmospheric dispersion are essential to both the site selection of a nuclear power plant and the evaluation of the environmental impacts of nuclear operations. Atmospheric stability plays the most important...Studies of atmospheric dispersion are essential to both the site selection of a nuclear power plant and the evaluation of the environmental impacts of nuclear operations. Atmospheric stability plays the most important role in the dispersion of air pollutants. The focus of attention in the present study is the estimation of the degree of stability of the atmosphere for the north coast of Egypt to evaluate the ability of the atmosphere to disperse pollutants. A FORTRAN program (Appendix 1) is presented to determine atmospheric stability using the Pasquill-Tunner Method PTM, which defines the turbulent state of the atmosphere and also reflects upon the dispersion capabilities of the atmosphere at the site. This method used several meteorological factors such as wind speed, insulation, cloud cover height and type. Meteorological data from Matrouh stations in Egypt is applied for a simulated model. The total patterns of stability classification, both monthly and seasonal patterns, are determined, also the stability-wind rose and stability-wind summary are provided. Finally prediction of Iodine surface air concentration is reported as well as the annual effective dose for I- 131 as a case study.展开更多
One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was consid...One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.展开更多
Rock slope kinematic analysis and rock mass classifications has been conducted at the 17^(th) km to 26^(th) km of USAID(United States Agency for International Development)highway in Indonesia.This research aimed to ex...Rock slope kinematic analysis and rock mass classifications has been conducted at the 17^(th) km to 26^(th) km of USAID(United States Agency for International Development)highway in Indonesia.This research aimed to examine the type of rock slope failures and the quality of rock mass as well.The scan-line method was performed in six slopes by using a geological compass to determine rock mass structure on the rock slope,and the condition of joints such as persistence,aperture,roughness,infilling material,weathering and groundwater conditions.Slope kinematic analysis was performed employing a stereographic projection.The rock slope quality and stability were investigated based on RMR(rock mass rating)and SMR(slope mass rating)parameters.The rock slope kinematic analysis revealed that planar failure was likely to occur in Slope 1,3,and 4,the wedge failure in Slope 1 and 6,and toppling failure in Slope 2,5,and 6.The RMR rating is ranging from 57 to 64 and can be categorized as Fair to Good rock.The SMR rating revealed that the failure probability of Slope 3 was 90%,while it was from 40%to 60%for others.Despite the uniform RMR for all slopes,the SMR was significantly different.The detailed quantitative consideration of orientation of joint sets and geometry of the slope contributed to such differences in outcomes.展开更多
The purpose of this paper is to characterize rock mass stability using basic rock mass method and to compare them. Rock mass quality and strength are determined using rock mass classification and numerical methods. Th...The purpose of this paper is to characterize rock mass stability using basic rock mass method and to compare them. Rock mass quality and strength are determined using rock mass classification and numerical methods. The Factors of safety are calculated with the results of stereographic projection. Results show that quality of ultrabasite and marble are better than quality of andesite. The Slope Mass Ratings (SMR) show that rocks with the best quality are stable and andesite partially stable. The calculation of the factors of Safety by limit equilibrium assigns a stable state for ultrabasite and marble and instable for andesite. Calculation of Safety factor using stereographic parameters in one hand and finite element code in another shows more possibility of planar sliding along discontinuities than rock matrix failure. At last, quality of endogeneous rock mass is correlated with its stability state. The better rock mass is, the more stable the rock it is.展开更多
In this paper,a combined Characteristic Ellipsoid(CELL)and Decision Tree(DT)method for fast classifying the transient stability of power systems after a large disturbance is proposed.The proposed two-stage method invo...In this paper,a combined Characteristic Ellipsoid(CELL)and Decision Tree(DT)method for fast classifying the transient stability of power systems after a large disturbance is proposed.The proposed two-stage method involves projection of the PMU measurement data after the disturbance on a multidimensional space to form the CELL and then classification of the transient stability using DT which takes the characteristic attributes of CELL under different fault scenarios as input features.The dynamic behaviors after a disturbance for both stable and unstable situations are identified from the variation of the CELL’s shape.The database,composed of the geometrical properties of the CELL such as volume,eccentricity,center and change rate of volume,is used to train a DT for transient stability classification.Case study on a IEEE 39-bus system demonstrates the feasibility of the proposed method.Investigations show that the proposed method requires less information from the system to fast classify the transient stability with high precision.展开更多
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金supported by the National Natural Science Foundation of China(Grant No.42162026)the Applied Basic Research Foundation of Yunnan Province(Grant No.202201AT070083).
文摘Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.
基金Project (51175095) supported by the National Natural Science Foundation of ChinaProjects (10251009001000001,9151009001000020) supported by the Natural Science Foundation of Guangdong Province,ChinaProject (20104420110001) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.
文摘This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- block masses of Qingjiang water conservancyproject, and better results are abtained. The method which isadvanced in the article is very single and practical, and it can meetall kinds of project's demands.
基金financially supported by the Saudi Geological Survey through a doctoral fellowship at McGill University
文摘The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to many factors such as adverse slope geometries, geological discontinuities, weak or weathered slope materials as well as severe weather conditions. External loads like heavy precipitation and seismicity could play a significant role in slope failure. In this paper, several rock mass classification systems developed for rock slope stability assessment are evaluated against known rock slope conditions in a region of Saudi Arabia, where slopes located in rugged terrains with complex geometry serve as highway road cuts. Selected empirical methods have been applied to 22 rock cuts that are selected based on their failure mechanisms and slope materials. The stability conditions are identified, and the results of each rock slope classification system are compared. The paper also highlights the limitations of the empirical classification methods used in the study and proposes future research directions.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.
基金Open Foundation by the Guangzhou Institute of Tropical and Marine Meteorology, CMA
文摘Stability parameters (Monin-Obukhov length L, gradient Richardson number Ri and bulk Rischardson number Ri), which are applicable in urban environment, were discussed for ways of calculating classification standards. Gradient observations from a 325-m meteorological tower in Beijing are used to categorize Rib based on three different standards of stability proposed by D. Golder, Irwin and Houghton. The results show that it is relatively reasonable for the region of Beijing to apply the classification standard by Irwin.
文摘Studies of atmospheric dispersion are essential to both the site selection of a nuclear power plant and the evaluation of the environmental impacts of nuclear operations. Atmospheric stability plays the most important role in the dispersion of air pollutants. The focus of attention in the present study is the estimation of the degree of stability of the atmosphere for the north coast of Egypt to evaluate the ability of the atmosphere to disperse pollutants. A FORTRAN program (Appendix 1) is presented to determine atmospheric stability using the Pasquill-Tunner Method PTM, which defines the turbulent state of the atmosphere and also reflects upon the dispersion capabilities of the atmosphere at the site. This method used several meteorological factors such as wind speed, insulation, cloud cover height and type. Meteorological data from Matrouh stations in Egypt is applied for a simulated model. The total patterns of stability classification, both monthly and seasonal patterns, are determined, also the stability-wind rose and stability-wind summary are provided. Finally prediction of Iodine surface air concentration is reported as well as the annual effective dose for I- 131 as a case study.
文摘One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.
文摘Rock slope kinematic analysis and rock mass classifications has been conducted at the 17^(th) km to 26^(th) km of USAID(United States Agency for International Development)highway in Indonesia.This research aimed to examine the type of rock slope failures and the quality of rock mass as well.The scan-line method was performed in six slopes by using a geological compass to determine rock mass structure on the rock slope,and the condition of joints such as persistence,aperture,roughness,infilling material,weathering and groundwater conditions.Slope kinematic analysis was performed employing a stereographic projection.The rock slope quality and stability were investigated based on RMR(rock mass rating)and SMR(slope mass rating)parameters.The rock slope kinematic analysis revealed that planar failure was likely to occur in Slope 1,3,and 4,the wedge failure in Slope 1 and 6,and toppling failure in Slope 2,5,and 6.The RMR rating is ranging from 57 to 64 and can be categorized as Fair to Good rock.The SMR rating revealed that the failure probability of Slope 3 was 90%,while it was from 40%to 60%for others.Despite the uniform RMR for all slopes,the SMR was significantly different.The detailed quantitative consideration of orientation of joint sets and geometry of the slope contributed to such differences in outcomes.
文摘The purpose of this paper is to characterize rock mass stability using basic rock mass method and to compare them. Rock mass quality and strength are determined using rock mass classification and numerical methods. The Factors of safety are calculated with the results of stereographic projection. Results show that quality of ultrabasite and marble are better than quality of andesite. The Slope Mass Ratings (SMR) show that rocks with the best quality are stable and andesite partially stable. The calculation of the factors of Safety by limit equilibrium assigns a stable state for ultrabasite and marble and instable for andesite. Calculation of Safety factor using stereographic parameters in one hand and finite element code in another shows more possibility of planar sliding along discontinuities than rock matrix failure. At last, quality of endogeneous rock mass is correlated with its stability state. The better rock mass is, the more stable the rock it is.
基金supported in part by the National Natural Science Foundation of China(NSFC Project,No.51437003).
文摘In this paper,a combined Characteristic Ellipsoid(CELL)and Decision Tree(DT)method for fast classifying the transient stability of power systems after a large disturbance is proposed.The proposed two-stage method involves projection of the PMU measurement data after the disturbance on a multidimensional space to form the CELL and then classification of the transient stability using DT which takes the characteristic attributes of CELL under different fault scenarios as input features.The dynamic behaviors after a disturbance for both stable and unstable situations are identified from the variation of the CELL’s shape.The database,composed of the geometrical properties of the CELL such as volume,eccentricity,center and change rate of volume,is used to train a DT for transient stability classification.Case study on a IEEE 39-bus system demonstrates the feasibility of the proposed method.Investigations show that the proposed method requires less information from the system to fast classify the transient stability with high precision.