Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the fie...Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry(GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls(C_3–C7),mono and di-carboxylic acids(C_3–C_18), and compounds bearing up to three functionalities.Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.展开更多
This study investigated the partitioning behavior of dissolved organic matter(DOM) in liquid and ice phases, as well as the changes in the optical properties and chlorine reactivity of DOM during the freezing proces...This study investigated the partitioning behavior of dissolved organic matter(DOM) in liquid and ice phases, as well as the changes in the optical properties and chlorine reactivity of DOM during the freezing processes of water. DOM was rejected from the ice phase and accumulated in the remaining liquid phase during water freezing. Moreover, the decrease in freezing temperature, as well as the increase in dissolved organic carbon(DOC)concentration of feed water, caused an increase in DOM captured in the ice phase. The ultraviolet-absorbing compounds, trihalomethane precursors, as well as fulvic acid- and humic acid-like fluorescent materials, were more liable to be to be rejected from the ice phase and were more easily retained in the unfrozen liquid phase during water freezing, as compared with organics(on average) that comprise DOC. In addition, it was also found a higher accumulation of these organics in the unfrozen liquid phase during water freezing at higher temperature. The freeze/thaw processes altered the quantity, optical properties, and chlorine reactivity of DOM. The decrease in ultraviolet light at 254 nm as well as the production of aromatic protein- and soluble microbial byproduct-like fluorescent materials in DOM due to freeze/thaw were consistently observed. On the other hand, the changes in DOC, trihalomethane formation potential, and fulvic acid- and humic acid-like fluorescence caused by freeze/thaw varied significantly between samples.展开更多
文摘Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry(GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls(C_3–C7),mono and di-carboxylic acids(C_3–C_18), and compounds bearing up to three functionalities.Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.
基金supported by the National Natural Science Foundation of China (No. 21107039)the Science and Technology Research Project of Liaoning Provincial Education Department (Nos. L2011002, L2012006)+1 种基金the Science and Technology Plan Project of Liaoning Province (No. 2011230009)the Natural Science Foundation of Liaoning Province of China (No. 201202091)
文摘This study investigated the partitioning behavior of dissolved organic matter(DOM) in liquid and ice phases, as well as the changes in the optical properties and chlorine reactivity of DOM during the freezing processes of water. DOM was rejected from the ice phase and accumulated in the remaining liquid phase during water freezing. Moreover, the decrease in freezing temperature, as well as the increase in dissolved organic carbon(DOC)concentration of feed water, caused an increase in DOM captured in the ice phase. The ultraviolet-absorbing compounds, trihalomethane precursors, as well as fulvic acid- and humic acid-like fluorescent materials, were more liable to be to be rejected from the ice phase and were more easily retained in the unfrozen liquid phase during water freezing, as compared with organics(on average) that comprise DOC. In addition, it was also found a higher accumulation of these organics in the unfrozen liquid phase during water freezing at higher temperature. The freeze/thaw processes altered the quantity, optical properties, and chlorine reactivity of DOM. The decrease in ultraviolet light at 254 nm as well as the production of aromatic protein- and soluble microbial byproduct-like fluorescent materials in DOM due to freeze/thaw were consistently observed. On the other hand, the changes in DOC, trihalomethane formation potential, and fulvic acid- and humic acid-like fluorescence caused by freeze/thaw varied significantly between samples.