Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phospha...Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the p K _a values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with p K _a. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.展开更多
Iron (Fe) is a vital element for the survival and proliferation of all plants;therefore, Fe-biofortification by the application of chemical and organic fertilizers is being as an effective approach to fight hidden hun...Iron (Fe) is a vital element for the survival and proliferation of all plants;therefore, Fe-biofortification by the application of chemical and organic fertilizers is being as an effective approach to fight hidden hunger retards the growth and development of crop plants. Two experiments were carried out to investigate the effect of potassium and exogenous organic acids on iron uptake by two different plants<span>:</span><span> one is monocotyledon</span><span>,</span><span><span> maize (<i></i></span><i><i><span>Zea mays</span></i><span></span></i> L.) and the second is dicotolydon pea (<i></i></span><i><i><span>Pisum sativum</span></i></i><span> L.) grown under controlled conditions. The seedlings were grown in sand culture in a greenhouse experiment and irrigated with one-tenth strength modified nutrient solution of Hoagland and Arnon as a base solution (pH 7.5), containing different iron treatments (0, 1, and 5 ppm as FeSO</span><sub>4</sub>·<span>7H</span><sub><span>2</span></sub><span>O) combined with potassium nutrition (0, 5, 10, and 50 ppm as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span>). After 30 days, the best interaction treatment was selected for further experiment including 5.0 ppm Fe as FeSO</span><sub>4</sub><sup>.</sup><span>7H</span><sub><span>2</span></sub><span>O and 50 ppm K as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span> in combination with 1</span><span> </span><span>×</span><span> </span><span><span>10<sup>-</sup></span><sup><span>5</span></sup><span> mole/liter of one </span></span><span>of </span><span>the following organic acids: Citric acid, Oxalic acid, Formic acid, Acetic acid, Propionic acid, Tartaric acid, Succinic acid, Fumaric acid, Malic acid, Glutamic acid, besides the free organic acid nutrient solution as a control. Results revealed that the interaction between 5.0 ppm Fe and 50 ppm K was the best interaction treatment for increasing biomass production and iron uptake of maize and pea seedlings under applied condition. Furthermore, exogenous application of organic acids improves uptake and translocation of nutrient such as iron, potassium and phosphorus by the maize and pea plants. In conclusion, potassium nutrition and exogenous organic acids have the potential to stimulate Fe-uptake of monocot and dicot plants and mediate iron-biofortified crops.</span>展开更多
Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals (kaolinite, goethite, and bayerite) were studied under different concentrations and different p...Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals (kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L-1 increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.展开更多
This study was undertaken to evaluate the influence of growing systems (conventional, organic and biodynamic performed with two types of manuring) on some nutritional traits of the tomato breeding line CXD271BIO (Sola...This study was undertaken to evaluate the influence of growing systems (conventional, organic and biodynamic performed with two types of manuring) on some nutritional traits of the tomato breeding line CXD271BIO (Solanum lycopersicum L.). Experimental fields were in the same geographical area and the cultivations were performed over five years. The content of macronutrients, minerals (Ca, K, Mg, P, Na), trace elements (Fe, Zn, Cu, Mn) and phenolic acids (chlorogenic, caffeic, p-coumaric and ferulic acids) was determined. The biodynamic A growing system showed the highest protein and carbohydrates content compared to the other growing systems. Data on minerals and trace elements content showed significant differences (mainly in Ca, Na, Fe and Zn content) between conventional and biodynamic tomatoes, whereas no major impact of the fertilization among organic and the two biodynamic growing systems was observed. Appreciable differences in phenolic acids biosynthesis were observed, with the year of harvest showing a marked effect especially on chlorogenic, p-cumaric and ferulic acids content. Conversely, the cultivation system did not show major influence. Principal Components Analysis (PCA), performed on mineral and phenolic acids content, substantiated the large effect of the year of harvest, also suggesting an effect of the conventional cultivation system.展开更多
Dissolved organic matter(DOM)and iron minerals widely existing in the natural aquatic environment can mediate the migration and transformation of organic pollutants.However,the mechanism of interaction between DOM and...Dissolved organic matter(DOM)and iron minerals widely existing in the natural aquatic environment can mediate the migration and transformation of organic pollutants.However,the mechanism of interaction between DOM and iron minerals in the microbial degradation of pollutants deserves further investigation.In this study,the mechanism of 17 alphaethinylestradiol(EE2)biodegradation mediated by humic acid(HA)and three kinds of iron minerals(goethite,magnetite,and pyrite)was investigated.The results found that HA and iron minerals significantly accelerated the biodegradation process of EE2,and the highest degradation efficiency of EE2(48%)was observed in the HA-mediated microbial system with pyrite under aerobic conditions.Furthermore,it had been demonstrated that hydroxyl radicals(HO·)was the main active substance responsible for the microbial degradation of EE2.HO·is primarily generated through the reaction between hydrogen peroxide secreted by microorganisms and Fe(II),with aerobic conditions being more conducive.The presence of iron minerals and HA could change the microbial communities in the EE2 biodegradation system.These findings provide new information for exploring the migration and transformation of pollutants by microorganisms in iron-rich environments.展开更多
To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like deg...To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents.展开更多
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, ...Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3 -N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P ≤ 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.展开更多
Red-mud is the residue from the Bayer process, in which the iron minerals should be removed before red-mud is used to produce refractory materials. The iron minerals in red-mud were extracted by oxalic acid solution. ...Red-mud is the residue from the Bayer process, in which the iron minerals should be removed before red-mud is used to produce refractory materials. The iron minerals in red-mud were extracted by oxalic acid solution. The content of Fe (calculated in Fe203) in red-mud was reduced from 17.6% to less than 1% after being treated by 1 mol/L oxalic acid solution at 75 ℃ for 2 h. The Fe(Ⅲ) oxalate solution obtained was then irradiated by UV light, resulting in the precipitation of Fe(Ⅱ) oxalate. Under UV photocatalysis, more than 90% of Fe(Ⅲ) oxalate in the extracted solution was transformed into the precipitation of Fe(Ⅱ) oxalate crystallite (fl-FeC2O4·2H2O). The filtrate from the Fe(Ⅱ) oxalate precipitate filtration could be reused in the next cycle. The mechanism ofUV photocatalysis precipitation was also discussed.展开更多
Marine sediments are the most significant reservoir of organic carbon(OC)in Earth′s surface system.Iron,a crucial component of the marine biogeochemical cycle,has a considerable impact on marine ecology and carbon cy...Marine sediments are the most significant reservoir of organic carbon(OC)in Earth′s surface system.Iron,a crucial component of the marine biogeochemical cycle,has a considerable impact on marine ecology and carbon cycling.Understanding the effect of iron on the preservation of OC in marine sediments is essential for comprehending biogeochemical processes of carbon and climate change.This review summarizes the methods for characterizing the content and structure of iron-bound OC and explores the influencing mechanism of iron on OC preservation in marine sediments from two aspects:the selective preservation of OC by reactive iron minerals(iron oxides and iron sulfides)and iron redox processes.The selective preservation of sedimentary OC is influenced by different types of reactive iron minerals,OC reactivity,and functional groups.The iron redox process has dual effects on the preservation and degradation of OC.By considering sedimentary records of iron-bound OC across diverse marine environments,the role of iron in long-term preservation of OC and its significance for carbon sequestration are illustrated.Future research should focus on identifying effective methods for extracting reactive iron,the effect of diverse functional groups and marine sedimentary environments on the selective preservation of OC,and the mediation of microorganisms.Such work will help elucidate the influencing mechanisms of iron on the long-term burial and preservation of OC and explore its potential application in marine carbon sequestration to maximize its role in achieving carbon neutrality.展开更多
Aluminum(Al) is the third most abundant element in the earth’s crust and a major factor inhibiting plant growth and reducing crop yield in acidic soil.Although there is substantial research on the phytotoxic effects ...Aluminum(Al) is the third most abundant element in the earth’s crust and a major factor inhibiting plant growth and reducing crop yield in acidic soil.Although there is substantial research on the phytotoxic effects and the underlying mechanisms of Al by applying Al alone hydroponically,soil is a complex medium containing numerous mineral elements that can interact with Al and other elements and their bioavailability in plants.In this review,we describe the roles of Al in promoting plant growth,enhancing phosphorus availability and efficient use in plants,and alleviating H+,iron,and manganese toxicity in acidic conditions.Furthermore,we discuss the possible mechanisms of enhanced abiotic stress tolerance induced by Al.We also elucidate the role of Al in attracting plant growth promoting rhizo-bacteria(PGPR) and their interactions with plants by increasing organic exudates.展开更多
A modified humic acid(MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binde...A modified humic acid(MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binder molecular and specularite particles, improving the green pellet strength. MHA binder has obvious effect on the strength and microstructure of preheated pellets due to the thermal decomposition of organic matters in MHA binder. Appropriately increasing preheating temperature or time can eliminate the adverse impact of organic matters on the preheated pellet strength. Compared with the bentonite pellets, the roasted pellets with MHA binder have a more compact microstructure, and the recrystallization of the Fe2O3 crystal grains is better.Consequently, under optimal conditions, 0.75%(mass fraction) MHA binder pellets have equal or better pellet strengths and contain1.06% more total iron than 2 % bentonite pellets. The testing results indicate that MHA binder is a promising and effective alternative to bentonite for the specularite pellets.展开更多
文摘Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the p K _a values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with p K _a. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.
文摘Iron (Fe) is a vital element for the survival and proliferation of all plants;therefore, Fe-biofortification by the application of chemical and organic fertilizers is being as an effective approach to fight hidden hunger retards the growth and development of crop plants. Two experiments were carried out to investigate the effect of potassium and exogenous organic acids on iron uptake by two different plants<span>:</span><span> one is monocotyledon</span><span>,</span><span><span> maize (<i></i></span><i><i><span>Zea mays</span></i><span></span></i> L.) and the second is dicotolydon pea (<i></i></span><i><i><span>Pisum sativum</span></i></i><span> L.) grown under controlled conditions. The seedlings were grown in sand culture in a greenhouse experiment and irrigated with one-tenth strength modified nutrient solution of Hoagland and Arnon as a base solution (pH 7.5), containing different iron treatments (0, 1, and 5 ppm as FeSO</span><sub>4</sub>·<span>7H</span><sub><span>2</span></sub><span>O) combined with potassium nutrition (0, 5, 10, and 50 ppm as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span>). After 30 days, the best interaction treatment was selected for further experiment including 5.0 ppm Fe as FeSO</span><sub>4</sub><sup>.</sup><span>7H</span><sub><span>2</span></sub><span>O and 50 ppm K as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span> in combination with 1</span><span> </span><span>×</span><span> </span><span><span>10<sup>-</sup></span><sup><span>5</span></sup><span> mole/liter of one </span></span><span>of </span><span>the following organic acids: Citric acid, Oxalic acid, Formic acid, Acetic acid, Propionic acid, Tartaric acid, Succinic acid, Fumaric acid, Malic acid, Glutamic acid, besides the free organic acid nutrient solution as a control. Results revealed that the interaction between 5.0 ppm Fe and 50 ppm K was the best interaction treatment for increasing biomass production and iron uptake of maize and pea seedlings under applied condition. Furthermore, exogenous application of organic acids improves uptake and translocation of nutrient such as iron, potassium and phosphorus by the maize and pea plants. In conclusion, potassium nutrition and exogenous organic acids have the potential to stimulate Fe-uptake of monocot and dicot plants and mediate iron-biofortified crops.</span>
基金Supported by the National Key Basic Research Support Foundation of China (No. 2002CB410804) the National Natural Science Foundation of China (No. 40201026).
文摘Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals (kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L-1 increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.
文摘This study was undertaken to evaluate the influence of growing systems (conventional, organic and biodynamic performed with two types of manuring) on some nutritional traits of the tomato breeding line CXD271BIO (Solanum lycopersicum L.). Experimental fields were in the same geographical area and the cultivations were performed over five years. The content of macronutrients, minerals (Ca, K, Mg, P, Na), trace elements (Fe, Zn, Cu, Mn) and phenolic acids (chlorogenic, caffeic, p-coumaric and ferulic acids) was determined. The biodynamic A growing system showed the highest protein and carbohydrates content compared to the other growing systems. Data on minerals and trace elements content showed significant differences (mainly in Ca, Na, Fe and Zn content) between conventional and biodynamic tomatoes, whereas no major impact of the fertilization among organic and the two biodynamic growing systems was observed. Appreciable differences in phenolic acids biosynthesis were observed, with the year of harvest showing a marked effect especially on chlorogenic, p-cumaric and ferulic acids content. Conversely, the cultivation system did not show major influence. Principal Components Analysis (PCA), performed on mineral and phenolic acids content, substantiated the large effect of the year of harvest, also suggesting an effect of the conventional cultivation system.
基金supported by the National Natural Science Foundation of China(Nos.42207450,21866017,and 42067056)the Yunnan Fundamental Research Projects(No.202101BE070001-013)the Foundation for Distinguished Young Talents of Yunnan Province(No.202101AV070006)。
文摘Dissolved organic matter(DOM)and iron minerals widely existing in the natural aquatic environment can mediate the migration and transformation of organic pollutants.However,the mechanism of interaction between DOM and iron minerals in the microbial degradation of pollutants deserves further investigation.In this study,the mechanism of 17 alphaethinylestradiol(EE2)biodegradation mediated by humic acid(HA)and three kinds of iron minerals(goethite,magnetite,and pyrite)was investigated.The results found that HA and iron minerals significantly accelerated the biodegradation process of EE2,and the highest degradation efficiency of EE2(48%)was observed in the HA-mediated microbial system with pyrite under aerobic conditions.Furthermore,it had been demonstrated that hydroxyl radicals(HO·)was the main active substance responsible for the microbial degradation of EE2.HO·is primarily generated through the reaction between hydrogen peroxide secreted by microorganisms and Fe(II),with aerobic conditions being more conducive.The presence of iron minerals and HA could change the microbial communities in the EE2 biodegradation system.These findings provide new information for exploring the migration and transformation of pollutants by microorganisms in iron-rich environments.
基金supported by the National Natural Science Foundation of China (No.22176067)。
文摘To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents.
基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-SW-120)the National Natural Science Foundation of China (No. 30470306)
文摘Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3 -N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P ≤ 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.
基金Project (2010AA101703) supported by the National Hi-tech Research and Development Program of China
文摘Red-mud is the residue from the Bayer process, in which the iron minerals should be removed before red-mud is used to produce refractory materials. The iron minerals in red-mud were extracted by oxalic acid solution. The content of Fe (calculated in Fe203) in red-mud was reduced from 17.6% to less than 1% after being treated by 1 mol/L oxalic acid solution at 75 ℃ for 2 h. The Fe(Ⅲ) oxalate solution obtained was then irradiated by UV light, resulting in the precipitation of Fe(Ⅱ) oxalate. Under UV photocatalysis, more than 90% of Fe(Ⅲ) oxalate in the extracted solution was transformed into the precipitation of Fe(Ⅱ) oxalate crystallite (fl-FeC2O4·2H2O). The filtrate from the Fe(Ⅱ) oxalate precipitate filtration could be reused in the next cycle. The mechanism ofUV photocatalysis precipitation was also discussed.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.202241001)the Natural Nature Science Foundation of China(Grant Nos.42076074,42006041&42076034)the Taishan Scholar Program(Grant No.TSQN20182117).
文摘Marine sediments are the most significant reservoir of organic carbon(OC)in Earth′s surface system.Iron,a crucial component of the marine biogeochemical cycle,has a considerable impact on marine ecology and carbon cycling.Understanding the effect of iron on the preservation of OC in marine sediments is essential for comprehending biogeochemical processes of carbon and climate change.This review summarizes the methods for characterizing the content and structure of iron-bound OC and explores the influencing mechanism of iron on OC preservation in marine sediments from two aspects:the selective preservation of OC by reactive iron minerals(iron oxides and iron sulfides)and iron redox processes.The selective preservation of sedimentary OC is influenced by different types of reactive iron minerals,OC reactivity,and functional groups.The iron redox process has dual effects on the preservation and degradation of OC.By considering sedimentary records of iron-bound OC across diverse marine environments,the role of iron in long-term preservation of OC and its significance for carbon sequestration are illustrated.Future research should focus on identifying effective methods for extracting reactive iron,the effect of diverse functional groups and marine sedimentary environments on the selective preservation of OC,and the mediation of microorganisms.Such work will help elucidate the influencing mechanisms of iron on the long-term burial and preservation of OC and explore its potential application in marine carbon sequestration to maximize its role in achieving carbon neutrality.
基金supported by the National Natural Science Foundation of China(31330055)the earmarked fund for China Agriculture Research System(CARS-05)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP)
文摘Aluminum(Al) is the third most abundant element in the earth’s crust and a major factor inhibiting plant growth and reducing crop yield in acidic soil.Although there is substantial research on the phytotoxic effects and the underlying mechanisms of Al by applying Al alone hydroponically,soil is a complex medium containing numerous mineral elements that can interact with Al and other elements and their bioavailability in plants.In this review,we describe the roles of Al in promoting plant growth,enhancing phosphorus availability and efficient use in plants,and alleviating H+,iron,and manganese toxicity in acidic conditions.Furthermore,we discuss the possible mechanisms of enhanced abiotic stress tolerance induced by Al.We also elucidate the role of Al in attracting plant growth promoting rhizo-bacteria(PGPR) and their interactions with plants by increasing organic exudates.
基金Project(50804059)supported by the National Natural Science Foundation of ChinaProject(CX2012B121)supported by the Innovation Research Program for Graduate Student of Hunan Province,China
文摘A modified humic acid(MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binder molecular and specularite particles, improving the green pellet strength. MHA binder has obvious effect on the strength and microstructure of preheated pellets due to the thermal decomposition of organic matters in MHA binder. Appropriately increasing preheating temperature or time can eliminate the adverse impact of organic matters on the preheated pellet strength. Compared with the bentonite pellets, the roasted pellets with MHA binder have a more compact microstructure, and the recrystallization of the Fe2O3 crystal grains is better.Consequently, under optimal conditions, 0.75%(mass fraction) MHA binder pellets have equal or better pellet strengths and contain1.06% more total iron than 2 % bentonite pellets. The testing results indicate that MHA binder is a promising and effective alternative to bentonite for the specularite pellets.