期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Extended π-conjugated N-containing heteroaromatic hexacarboxylate organic anode for high performance rechargeable batteries 被引量:1
1
作者 Shu-Biao Xia Teng Liu +4 位作者 Wen-Jin Huang Hong-Bo Suo Fei-Xiang Cheng Hong Guo Jian-Jun Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期303-311,共9页
Organic electrode materials are desirable for green and sustainable Li-ion batteries(LIBs) due to their light-weight, low cost, abundance and multi-electron transfer reactions during battery operation. However, the su... Organic electrode materials are desirable for green and sustainable Li-ion batteries(LIBs) due to their light-weight, low cost, abundance and multi-electron transfer reactions during battery operation. However, the successful utilization of organic electrodes is hindered by their poor electrical conductivity and low cyclic stability. Herein, a facile synthesis of π-conjugated N-containing heteroaromatic hexacarboxylate(Li6-HAT) compound and its electrochemical performance as an anode material in LIBs is reported.The as-synthesized Li6-HAT electrode renders an ultrahigh initial capacity of 1126.3 m Ah g^(-1) at the current density of 100 m A g^(-1). Moreover, π-conjugated N-containing heteroaromatic center provide excellent reversibility of(de)lithiation process, resulting in excellent capacity retention. Furthermore, a combination of density functional theory(DFT) calculations, in-situ Fourier transform infrared(FTIR) and ex-situ X-ray photoelectron spectroscopy(XPS) characterization reveal that the π-conjugated nitrogen and carboxyl oxygen act as electrochemically active sites during the charge/discharge process. The current work provides novel insights into the charge storage mechanism of organic electrodes and opens up avenues for further development and utilization of organic electrodes in Li-ion batteries. 展开更多
关键词 Li-ion batteries Hexacarboxylate π-conjugated compounds N-containing organic anode
下载PDF
Sodium-Coordinated Polymeric Phthalocyanines as Stable High-Capacity Organic Anodes for Sodium-Ion Batteries
2
作者 Jeongyeon Lee Yoonbin Kim +9 位作者 Soyong Park Kang Ho Shin Gun Jang Min Jun Hwang Daekyu Kim Kyung-Ah Min Ho Seok Park Byungchan Han Dennis K.P.Ng Lawrence Yoon Suk Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期22-30,共9页
Sodium-ion batteries(SIBs)have attracted considerable interest as an alternative to lithium-ion batteries owing to their similar electrochemical performance and superior long-term cycle stability.Organic materials are... Sodium-ion batteries(SIBs)have attracted considerable interest as an alternative to lithium-ion batteries owing to their similar electrochemical performance and superior long-term cycle stability.Organic materials are regarded as promising anode materials for constructing SIBs with high capacity and good retention.However,utilization of organic materials is rather limited by their low energy density and poor stability at high current densities.To overcome these limitations,we utilized a novel polymeric disodium phthalocyanines(pNaPc)as SIB anodes to provide stable coordination sites for Na ions as well as to enhance the stability at high current density.By varying the linker type during a one-pot cyclization and polymerization process,two pNaPc anodes with O-(O-pNaPc)and S-linkers(S-pNaPc)were prepared,and their structural and electrochemical properties were investigated.The O-pNaPc binds Na ions with a lower binding energy compared with S-pNaPc,which leads to more facile Na-ion coordination/dissociation when engaged as SIB anode.The use of O-pNaPc significantly improves the redox kinetics and cycle stability and allows the fabrication of a full cell against Na_(3)V_(2)(PO_(4))_(2)F_(3)/C cathode,which demonstrates its practical application with high energy density(288 Wh kg^(-1))and high power density(149 W kg^(-1)). 展开更多
关键词 coordination chemistry organic anode PHTHALOCYANINE POLYMERIZATION sodium ion battery
下载PDF
Universal organic anodes enable safe low-cost aqueous rechargeable batteries with long cycle life,high capacity, and fast kinetics
3
作者 Weixing Song Guozhong Cao 《Science China Materials》 SCIE EI CSCD 2017年第8期789-791,共3页
Future battery advances and economies of scale will help scrub CO2emissions from transportation and the grid.Economical energy storage lets battery-powered electric vehicles replace internal combustion engines in the ... Future battery advances and economies of scale will help scrub CO2emissions from transportation and the grid.Economical energy storage lets battery-powered electric vehicles replace internal combustion engines in the transportation sector,which now accounts for the plurality of CO2emissions.For grid-scale applications,the benefits of adding storage are many and well documented[1–2].Beyond increased penetration of intermittent renewable energy generated from such as solar panels 展开更多
关键词 cycle life with and fast kinetics Universal organic anodes enable safe low-cost aqueous rechargeable batteries with long cycle life high capacity high
原文传递
Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode
4
作者 穆叶 张振松 +5 位作者 王红波 曲大龙 吴宇坤 严萍瑞 李传南 赵毅 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期132-135,共4页
It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organi... It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multi- layer Cs2CO3/AI/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4callA and 12.1 1m/W at a practical brightness of lO00cd/m2 at low voltage of 4 V. 展开更多
关键词 OLEDs Top-Emitting White organic Light-Emitting Diodes Based on Cu as Both anode and Cathode CU
下载PDF
Natural Lignin:A Sustainable and Cost-Effective Electrode Material for High-Temperature Na-Ion Battery
5
作者 Yuqi She Xiwei Li +4 位作者 Yanqin Zheng Dong Chen Xianhong Rui Xuliang Lin Yanlin Qin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期1-8,共8页
Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic el... Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices. 展开更多
关键词 high-temperature performance LIGNIN Na storage mechanism organic anode sodium-ion battery
下载PDF
Reversible lithium storage in sp^(2) hydrocarbon frameworks
6
作者 Zhangxiang Hao Junrun Feng +9 位作者 Yiyun Liu Liqun Kang Bolun Wang Junwen Gu Lin Sheng Ruoyu Xu Sushila Marlow Dan J.L.Brett Yunhui Huang Feng Ryan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期161-167,I0006,共8页
Polymer materials offer controllable structure-dependent performances in separation,catalysis and drug release.Their molecular structures can be precisely tailored to accept Li^(+)for energy storage applications.Here ... Polymer materials offer controllable structure-dependent performances in separation,catalysis and drug release.Their molecular structures can be precisely tailored to accept Li^(+)for energy storage applications.Here the design of sp^(2)carbon-based polyphenylene(PPH)with high lithium-ion uptakes and long-term stability is reported.Linear-PPH(L-PPH)exceeds the performance of crosslink-PPH(C-PPH),due to the fact that it has an ordered lamellar structure,promoting the Li^(+)intercalation/deintercalation channel.The L-PPH cell shows a clear charge and discharge plateau at 0.35 and 0.15 V vs.Li^(+)/Li,respectively,which is absent in the C-PPH cell.The Li^(+)storage capacity of L-PPH is five times that of the C-PPH.The reversible storage capacity is further improved to 261 m Ah g;by functionalizing the L-PPH with the–SO_(3)H groups.In addition,the Li-intercalated structures of C-PPH and L-PPH are investigated via near-edge X-ray absorption fine structure(NEXAFS),suggesting the high reversible Li^(+)–C=C bond interaction at L-PPH.This strategy,based on new insight into sp^(2)functional groups,is the first step toward a molecular understanding of the structure storage-capacity relationship in sp^(2)carbon-based polymer. 展开更多
关键词 Lithium-ions battery organic anode Topological structure sp^(2)hydrocarbon
下载PDF
Inorganic Nanotube/Organic Nanoparticle Hybrids for Enhanced Photoelectrochemical Properties 被引量:1
7
作者 Yingzhi Chen Aoxiang Li +2 位作者 Ming Jin Lu-Ning Wang Zheng-Hong Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第7期728-733,共6页
Inorganic/organic nanohybrids composed of arrayed TiO_2 nanotubes(Ti NTs)/porphyrin nanoparticles(NPs) have been fabricated via a wet chemical approach. The inorganic component, particularly the arrayed one-dimens... Inorganic/organic nanohybrids composed of arrayed TiO_2 nanotubes(Ti NTs)/porphyrin nanoparticles(NPs) have been fabricated via a wet chemical approach. The inorganic component, particularly the arrayed one-dimensional(1D) nanostructures, provides high charge-carrier mobility and rapid charge transport. The organic component exhibits extensive visible light absorption and good solution processability. Additionally, the geometric restraint by supramolecular assembly renders an improved photostability. A combination of these two components could thus allow for an efficient solar energy conversion. In this work, a colloid of porphyrin NPs prepared by a solvent exchange method is coated on anodic Ti NTs by means of a dip-coating treatment to form inorganic/organic hybrids. The hybrids exhibit an improvement on solar absorption and a significant enhancement on photocurrent generation at a small bias compared with individual component. Herein, the inorganic/organic nanohybrids are proved to be excellent photoanodes highly responsive to visible light and thus pave a way to discover new inorganic/organic assemblies for high-performance optoelectronic applications, as well as for device integration. 展开更多
关键词 Anodic TiO_2 nanotubes Porphyrin nanoparticles Inorganic/organic nanohybrid Photoelectrochemical water splitting
原文传递
An in-situ spectroscopy investigation of alkali metal interaction mechanism with the imide functional group 被引量:1
8
作者 Xu Lian Zhirui Ma +10 位作者 Zhonghan Zhang Jinlin Yang Shuo Sun Chengding Gu Yuan Liu Honghe Ding Jun Hu Xu Cao Junfa Zhu Shuzhou Li Wei Chen 《Nano Research》 SCIE EI CAS CSCD 2020年第12期3224-3229,共6页
Organic anode materials have attracted considerable interest owing to their high tunability by adopting various active functional groups.However,the interaction mechanisms between the alkali metals and the active func... Organic anode materials have attracted considerable interest owing to their high tunability by adopting various active functional groups.However,the interaction mechanisms between the alkali metals and the active functional groups in host materials have been rarely studied systematically.Here,a widely used organic semiconductor of perylene-3,4,9,10-tetracarboxylic diimide(PTCDI)was selected as a model system to investigate how alkali metals interact with imide functional groups and induce changes in chemical and electronic structures of PTCDI.The interaction at the alkali/PTCDI interface was probed by in-situ X-ray photoelectron spectroscopy(XPS),ultraviolet photoelectron spectroscopy(UPS),synchrotron-based near edge X-ray absorption fine structure(NEXAFS),and corroborated by density functional theory(DFT)calculations.Our results indicate that the alkali metal replaces the hydrogen atoms in the imide group and interact with the imide nitrogen of PTCDI.Electron transfer induced gap states and downward band-bending like effects are identified on the alkali-deposited PTCDI surface.It was found that Na shows a stronger electron transfer effect than Li.Such a model study of alkali insertion/intercalation in PTCDI gives insights for the exploration of the potential host materials for alkali storage applications. 展开更多
关键词 perylene-3 4 9 10-tetracarboxylic diimide(PTCDI) lithium storage organic anode IMIDE electron transfer
原文传递
Electrocatalytic reduction of ortho nitrobenzaldehyde using modified aluminum electrode and its determination
9
作者 Vairamuthu Raj Jayachandran Silambarasan Panchanathan Rajakumar 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第7期1531-1539,共9页
A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanor... A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanorods/anodic aluminum oxide/aluminum(SnNR/AAO/Al) for the first time. The SnNR/AAO/Al electrode was fabricated by a second step anodization, followed by electrodeposition and its electrochemical behavior was investigated in detail. The cyclic voltammetry results indicated that the SnNR/AAO/Al electrode exhibited efficient electrocatalytic activity toward reduction of ONB in the acidic solution. It provides an appreciable improvement of reduction peak for ONB at-0.721 V.Furthermore, various kinetic parameters such as transfer electron number, transfer proton number and standard heterogeneous rate constant were calculated from the scan rates.The electrocatalytic behavior was further exploited as a sensitive detection scheme for the ONB determination by differential pulse voltammetry. Under the optimized conditions, the concentration range and detection limit are 0.1-100 μmol/L and 0.05 μmol/L, respectively,for ONB. The analytical performance of this modified sensor has been evaluated for detection of real sample such as river water and recovery of ONB was achieved all-out up to102.3% under standard addition method. 展开更多
关键词 Electrochemical sensor organic pollutant Aluminum electrode Anodic aluminum oxide Tin nanorods Ortho nitrobenzaldehyde Cyclic voltammetry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部