The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp...The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation.展开更多
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical...Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-3o cm) showed no significant differences, while AP content in top soft (0-15 cm) was significantly higher than that in sub-top soil (15-30cm). SOC content was correlated positively with TN and TP content (r = 0.901and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.展开更多
Soil labile organic carbon (C) plays an important role in improving soil quality. The relatively stable fractions of soil organic C (SOC) represent the bulk of SOC, and are also the primary determinant of the long...Soil labile organic carbon (C) plays an important role in improving soil quality. The relatively stable fractions of soil organic C (SOC) represent the bulk of SOC, and are also the primary determinant of the long-term C balance of terrestrial ecosystems. Different land use types can influence the distribution patterns of different SOC fractions. However, the underlying mechanisms are not well understood. In the present study, different fractions of SOC were determined in two land use types: a grazed grassland (established on previously cultivated cropland 25 years ago, GG) and a long-term cultivated millet cropland (MC). The results showed that C concentration and C storage of light fractions (LF) and heavy fractions (HF) presented different patterns along the soil profiles in the two sites. More plant residues in GG resulted in 91.9% higher LF storage at the 0-10 cm soil depth, further contributed to 21.9% higher SOC storage at this soil depth; SOC storage at 20-60 cm soil depth in MC was 98.8% higher than that in GG, which could be mainly attributed to the HF storage 104.5% higher than in GG. This might be caused by the long-term application of organic manure, as well as the protection from plough pan and silt- and clay-sized particles. The study indicated that different soil management practices in this region can greatly influence the variations of different SOC fractions, while the conventional tillage can greatly improve the storage of SOC by in- creasing heavy fractions.展开更多
Assessment of soil organic matter fractions can be instrumental in understanding the causes of limited nitrogen supply, and thus soil fertility restoration. A study was conducted in cultivated and uncultivated saline ...Assessment of soil organic matter fractions can be instrumental in understanding the causes of limited nitrogen supply, and thus soil fertility restoration. A study was conducted in cultivated and uncultivated saline soil, in order to assay soil organic carbon (SOC), its particle-size fractions and their influence on cultivation and soil fertility at Sundarbans costal area in Bangladesh. Soil samples were taken from the 0 - 15 and 15 - 30 cm depths from four cultivated fields and from four nearby sites in a native mangrove forest as references. Soil samples were physically fractionated into sand (2000-50 μm), silt (50-2 μm) and clay (<2 μm). Total SOC and N were analyzed in bulk samples and each size fraction, and the Carbon Management Index (CMI), a widely used indicator of soil quality, was calculated for each field. The CMI in cultivated soils was far below the 100% in reference soils, reaching 38.16%, 25.70%, 32.21% and 34.43% in Field 1, Field 2, Field 3 and Field 4 respectively. SOC and N concentrations decreased in particle size separates in the order clay > silt > sand. The SOC pool and N in the clay-sized fraction were correlated to soil fertility indicators. More N was stored in the silt + clay size fractions, a generally more stable pool, than in the more labile sand-sized pool. The SOC pool in sand size fractions was far below in cultivated soils than in a reference uncultivated soil. Thus, the sand-sized pool emerged as the most likely cause of limited N supply in cultivated soils.展开更多
基金the National Natural Science Foundation of China(40231016)the National Key Technologies R&D Program of China(2006BAD05B01-02)
文摘The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation.
基金supported by the Western Action Plan Project of the Chinese Academy of Sciences(Grant No.KZCX2-XB3-08)the Strategic Pilot Science and Technology Projects of Chinese Academy of Sciences(Grant No.XDB03030505)the One Hundred Young Persons Project of the Institute of Mountain Hazards and Environment(Grant No.SDSQB-2010-02)
文摘Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-3o cm) showed no significant differences, while AP content in top soft (0-15 cm) was significantly higher than that in sub-top soil (15-30cm). SOC content was correlated positively with TN and TP content (r = 0.901and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.
基金supported by National Basic Research Program of China (2014CB138703)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050403)+3 种基金Changjiang Scholars and Innovative Research Team in University (IRT13019)Key Science and Technology Projects of Gansu Province (1203FKDA035)Fundamental Research Funds for the Central Universities (lzujbky-2014-78)the National Natural Science Foundation of China (31070412, 31201837)
文摘Soil labile organic carbon (C) plays an important role in improving soil quality. The relatively stable fractions of soil organic C (SOC) represent the bulk of SOC, and are also the primary determinant of the long-term C balance of terrestrial ecosystems. Different land use types can influence the distribution patterns of different SOC fractions. However, the underlying mechanisms are not well understood. In the present study, different fractions of SOC were determined in two land use types: a grazed grassland (established on previously cultivated cropland 25 years ago, GG) and a long-term cultivated millet cropland (MC). The results showed that C concentration and C storage of light fractions (LF) and heavy fractions (HF) presented different patterns along the soil profiles in the two sites. More plant residues in GG resulted in 91.9% higher LF storage at the 0-10 cm soil depth, further contributed to 21.9% higher SOC storage at this soil depth; SOC storage at 20-60 cm soil depth in MC was 98.8% higher than that in GG, which could be mainly attributed to the HF storage 104.5% higher than in GG. This might be caused by the long-term application of organic manure, as well as the protection from plough pan and silt- and clay-sized particles. The study indicated that different soil management practices in this region can greatly influence the variations of different SOC fractions, while the conventional tillage can greatly improve the storage of SOC by in- creasing heavy fractions.
文摘Assessment of soil organic matter fractions can be instrumental in understanding the causes of limited nitrogen supply, and thus soil fertility restoration. A study was conducted in cultivated and uncultivated saline soil, in order to assay soil organic carbon (SOC), its particle-size fractions and their influence on cultivation and soil fertility at Sundarbans costal area in Bangladesh. Soil samples were taken from the 0 - 15 and 15 - 30 cm depths from four cultivated fields and from four nearby sites in a native mangrove forest as references. Soil samples were physically fractionated into sand (2000-50 μm), silt (50-2 μm) and clay (<2 μm). Total SOC and N were analyzed in bulk samples and each size fraction, and the Carbon Management Index (CMI), a widely used indicator of soil quality, was calculated for each field. The CMI in cultivated soils was far below the 100% in reference soils, reaching 38.16%, 25.70%, 32.21% and 34.43% in Field 1, Field 2, Field 3 and Field 4 respectively. SOC and N concentrations decreased in particle size separates in the order clay > silt > sand. The SOC pool and N in the clay-sized fraction were correlated to soil fertility indicators. More N was stored in the silt + clay size fractions, a generally more stable pool, than in the more labile sand-sized pool. The SOC pool in sand size fractions was far below in cultivated soils than in a reference uncultivated soil. Thus, the sand-sized pool emerged as the most likely cause of limited N supply in cultivated soils.