iFEM(inverse finite element method)是目前进行结构应变场构建最有前景的方法之一,其目的是在结构离散应变采集过程中,以最少的实际测点获取满足精度要求的结构应变场。在一些局部区域应变数据不易采集时,可尝试采用虚实结合的方式进...iFEM(inverse finite element method)是目前进行结构应变场构建最有前景的方法之一,其目的是在结构离散应变采集过程中,以最少的实际测点获取满足精度要求的结构应变场。在一些局部区域应变数据不易采集时,可尝试采用虚实结合的方式进行离散应变数据的采集。本文以船舶典型结构加筋板为例,根据实测数据,结合仿真模型,依据Xgboost的测点回归方法,基于iFEM技术依次计算实测、仿真和虚实结合三种方法的应变场重构精度,分析误差原因。通过预测,当47个物理测点时平均误差最低,为1.92%,以虚实结合路径输入15个点和21个点时结果与验证点的误差均小于3%,验证了虚实结合快速补充缺失数据的应变场重构的方法操作性强、准确度高。展开更多
针对馈线自动化的功能测试问题,为避免配电终端接入实际配电网进行测试实验可能对电力系统的安全运行造成不利影响,同时为了提高测试的灵活性、效率性和正确性,文中提出了一种虚实结合的馈线自动化测试方法,利用RTLAB(Real Time Laborat...针对馈线自动化的功能测试问题,为避免配电终端接入实际配电网进行测试实验可能对电力系统的安全运行造成不利影响,同时为了提高测试的灵活性、效率性和正确性,文中提出了一种虚实结合的馈线自动化测试方法,利用RTLAB(Real Time Laboratory)实时全数字仿真器搭建配电网并模拟故障运行,设计具备保护、重合闸、就地式FA(Feeder Automation)功能的仿真型虚拟配电终端用于开展RTLAB实时仿真器与物理模型硬件在环仿真研究。文中设计的基于高性能线性功率放大器的接口实施方案被测配电终端接入测试系统形成闭环,构建了虚实结合的馈线自动化仿真测试环境。通过开展基本故障处理能力测试和容错能力测试的硬件在环仿真实验,验证了接口装置的准确性,同时验证了测试平台的有效性。展开更多
文摘iFEM(inverse finite element method)是目前进行结构应变场构建最有前景的方法之一,其目的是在结构离散应变采集过程中,以最少的实际测点获取满足精度要求的结构应变场。在一些局部区域应变数据不易采集时,可尝试采用虚实结合的方式进行离散应变数据的采集。本文以船舶典型结构加筋板为例,根据实测数据,结合仿真模型,依据Xgboost的测点回归方法,基于iFEM技术依次计算实测、仿真和虚实结合三种方法的应变场重构精度,分析误差原因。通过预测,当47个物理测点时平均误差最低,为1.92%,以虚实结合路径输入15个点和21个点时结果与验证点的误差均小于3%,验证了虚实结合快速补充缺失数据的应变场重构的方法操作性强、准确度高。
文摘针对馈线自动化的功能测试问题,为避免配电终端接入实际配电网进行测试实验可能对电力系统的安全运行造成不利影响,同时为了提高测试的灵活性、效率性和正确性,文中提出了一种虚实结合的馈线自动化测试方法,利用RTLAB(Real Time Laboratory)实时全数字仿真器搭建配电网并模拟故障运行,设计具备保护、重合闸、就地式FA(Feeder Automation)功能的仿真型虚拟配电终端用于开展RTLAB实时仿真器与物理模型硬件在环仿真研究。文中设计的基于高性能线性功率放大器的接口实施方案被测配电终端接入测试系统形成闭环,构建了虚实结合的馈线自动化仿真测试环境。通过开展基本故障处理能力测试和容错能力测试的硬件在环仿真实验,验证了接口装置的准确性,同时验证了测试平台的有效性。