期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact of land use/cover changes on carbon storage in a river valley in arid areas of Northwest China 被引量:7
1
作者 YANG Yuhai LI Weihong +2 位作者 ZHU Chenggang WANG Yang HUANG Xiang 《Journal of Arid Land》 SCIE CSCD 2017年第6期879-887,共9页
Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently th... Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently the climate. Based on the data from 127 soil sample sites, 48 vegetation survey plots, and Landsat TM images, we analyzed the land use/cover changes, estimated soil organic carbon(SOC) storage and vegetation carbon storage of grassland, and discussed the impact of grassland changes on carbon storage during 2000 to 2013 in the Ili River Valley of Northwest China. The results indicate that the areal extents of forestland, shrubland, moderate-coverage grassland(MCG), and the waterbody(including glaciers) decreased while the areal extents of high-coverage grassland(HCG),low-coverage grassland(LCG), residential and industrial land, and cultivated land increased. The grassland SOC density in 0–100 cm depth varied with the coverage in a descending order of HCG〉MCG〉LCG.The regional grassland SOC storage in the depth of 0–100 cm in 2013 increased by 0.25×1011 kg compared with that in 2000. The regional vegetation carbon storage(S_(rvc)) of grassland was 5.27×10~9 kg in2013 and decreased by 15.7% compared to that in 2000. The vegetation carbon reserves of the under-ground parts of vegetation(S_(ruvb)) in 2013 was 0.68×10~9 kg and increased by approximately 19.01%compared to that in 2000. This research can improve our understanding about the impact of land use/cover changes on the carbon storage in arid areas of Northwest China. 展开更多
关键词 land use/cover organic carbon grassland global change Ili River Valley
下载PDF
SOC storage and potential of grasslands from 2000 to 2012 in central and eastern Inner Mongolia, China 被引量:3
2
作者 TIAN Zheng WU Xiuqin +1 位作者 DAI Erfu ZHAO Dongsheng 《Journal of Arid Land》 SCIE CSCD 2016年第3期364-374,共11页
Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective managemen... Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective management of grassland ecosystems. Grasslands in Inner Mongolia have undergone evident impacts from human activities and natural factors in recent decades. To explore the changes of carbon sequestration capacity of grasslands from 2000 to 2012, we carried out studies on the estimation of SOC storage and potential of grasslands in central and eastern Inner Mongolia, China based on field investigations and MODIS image data. First, we calculated vegetation cover using the dimidiate pixel model based on MODIS-EVI images. Following field investigations of aboveground biomass and plant height, we used a grassland quality evaluation model to get the grassland evaluation index, which is typically used to represent grassland quality. Second, a correlation regression model was established between grassland evaluation index and SOC density. Finally, by this regression model, we calculated the SOC storage and potential of the studied grasslands. Results indicated that SOC storage increased with fluctuations in the study area, and the annual changes varied among different sub-regions. The SOC storage of grasslands in 2012 increased by 0.51×1012 kg C compared to that in 2000. The average carbon sequestration rate was 0.04×1012 kg C/a. The slope of the values of SOC storage showed that SOC storage exhibited an overall increase since 2000, particularly for the grasslands of Hulun Buir city and Xilin Gol League, where the typical grassland type was mainly distributed. Taking the SOC storage under the best grassland quality between 2000 and 2012 as a reference, this study predicted that the SOC potential of grasslands in central and eastern Inner Mongolia in 2012 is 1.38×1012 kg C. This study will contribute to researches on related methods and fundamental database, as well as provide a reference for the protection of grassland ecosystems and the formulation of local policies on sustainable grassland development. 展开更多
关键词 vegetation cover soil organic carbon potential soil organic carbon storage carbon sequestration MODIS data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部