Organic multiple quantum wells(OMQWs) consisting of alternating layers of organic materials have been fabricated from tris(8-hydroxyquinoline) aluminum(Alq)and 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,3,3-oxadiazole(P...Organic multiple quantum wells(OMQWs) consisting of alternating layers of organic materials have been fabricated from tris(8-hydroxyquinoline) aluminum(Alq)and 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,3,3-oxadiazole(PBD) by a multisource-type high-vacuum organic molecular deposition.From the small-angle X-ray diffraction patterns of Alq/PBD OMQWs,a periodically layered structure is confirmed through the entire stack.The Alq layer thickness in the OMQWs was varied from 1 nm to 4 nm.From the optical absorption,photoluminescence and electroluminescence measurements,it is found that the exciton energy shifts to higher energy with decreasing Alq layer thickness,The changes of the exciton energy could be interpreted as the confinement effects of exciton in the Alq thin layers.Narrowing of the emission spectrum has also been observed for the electroluminescent devices (ELDs) with the OMQWs structure at room temperature.展开更多
Double-layer organic electroluminescent devices have been constructed. A new fluorescent dye, 9,10-bis(phenylethynyl)anthracence, was chosen as the dopant which was molecularly dispersed in the polymer film, and green...Double-layer organic electroluminescent devices have been constructed. A new fluorescent dye, 9,10-bis(phenylethynyl)anthracence, was chosen as the dopant which was molecularly dispersed in the polymer film, and green light was observed from the device with luminance of 130cd/m(2) at 17V.展开更多
Superlattices consisting of alternating layers of organic/polymeric materials have been fabricated from tris(8-hydroxyquinoline)aluminum(Alq3) and poly(N-vinylcarbazole)(PVK) by a multisource-type high-vacuum organic ...Superlattices consisting of alternating layers of organic/polymeric materials have been fabricated from tris(8-hydroxyquinoline)aluminum(Alq3) and poly(N-vinylcarbazole)(PVK) by a multisource-type high-vacuum organic molecular deposition.The characteristics of superlattice structures are determined by the small-angle X-ray diffraction,optical absorption and photoluminescence.The electroluminescent devices with the superlattice structure have also been fabricated and the emission characteristics are discussed.展开更多
A gadolinium ternary complex, tris(1 phenyl 3 methyl 4 isobutyryl 5 pyrazolone) (2, 2′ dipyridyl) gadolinium Gd(PMIP) 3(Bipy) was synthesized and used as a light emitting material in the organic electrolumin...A gadolinium ternary complex, tris(1 phenyl 3 methyl 4 isobutyryl 5 pyrazolone) (2, 2′ dipyridyl) gadolinium Gd(PMIP) 3(Bipy) was synthesized and used as a light emitting material in the organic electroluminescent devices. The devices exhibited the green electroluminescent (EL) emission peaking at 513 nm, originating from the Gd(PMIP) 3(Bipy). By improving the configuration, the device with a structure of ITO/poly(N vinylcarbazole) (PVK) (40 nm)/Gd(PMIP) 3(Bipy) (40 nm)/tris (8 hydroxyquinoline) aluminum (ALQ) (40 nm)/Mg∶Ag(200 nm)/Ag(100 nm) showed higher performance and a maximum luminance of 340 cd·m -2 at 18 V.展开更多
Long life green emitting matrix display based on organic light emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm 2, and the pixel gap 0.1 mm. An image with no crossta...Long life green emitting matrix display based on organic light emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm 2, and the pixel gap 0.1 mm. An image with no crosstalk between pixels is obtained. The average luminance of these pixels at duty cycle of 1/64 is 100 cd/m 2, and the power consumption is 0.6 W. The dark room contrast of 1∶100 is achieved without using a polarization filter.展开更多
High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of...High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyl- 1,1'-biphenyl-4,4'- diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.展开更多
A controllable etching process for indium zinc oxide (IZO) films was developed by using a weak etchant of oxalic acid with a slow etching ratio. With controllable etching time and temperature, a patterned IZO electr...A controllable etching process for indium zinc oxide (IZO) films was developed by using a weak etchant of oxalic acid with a slow etching ratio. With controllable etching time and temperature, a patterned IZO electrode with smoothed surface morphology and slope edge was achieved. For the practical application in organic light emitting devices (OLEDs), a sup- pression of the leak current in the current-voltage characteristics of OLEDs was observed. It resulted in a 1.6 times longer half lifetime in the IZO-based OLEDs compared to that using an indium tin oxide (ITO) anode etched by a conventional strong etchant of aqua regia.展开更多
We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be ef...We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120℃. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120℃ annealed pentacene film and n-doped electron transport layer(ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m^2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device.展开更多
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage c...The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.展开更多
We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first...We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first group of devices based on Alq3, we insert a thin Al layer of different thickness into Cs2CO3 injection layer, and the device's maximum current efficiency of 6.5 cd/A is obtained when the thickness of the thin Al layer is 0.4 nm. However, when the thickness of Al layer is 0.8 nm, the capacity of electron injection is the strongest. To validate the universality of this approach, then we fabricate another group of devices based on another blue emitting material. The maximum current efficiency of the device without and with a thin Al layer is 4.51 cd/A and 4.84 cd/A, respectively. Inserting a thin Al layer of an appropriate thickness into Cs2CO3 layer can result in the reduction of electron injection barrier, enhancement of the electron injection, and improvement of the performance of OLEDs. This can be attributed to the mechanism that thermally evaporated Cs2CO3 decomposes into cesium oxides, the thin Al layer reacts with cesium oxides to form Al–O–Cs complex, and the amount of the Al–O–Cs complex can be controlled by adjusting the thickness of the thin Al layer.展开更多
A new structure containing negative refractive index dielectric layer(NRlDL) is introduced into microcavity. The properties of the new mierocavity organic light-emitting devices(MOLEDs) are investigated. In the ex...A new structure containing negative refractive index dielectric layer(NRlDL) is introduced into microcavity. The properties of the new mierocavity organic light-emitting devices(MOLEDs) are investigated. In the experiment, the transfer matrix method is adopted. The dependence of reflectance and transmittance on the refractive index and thickness of NRIDL are analyzed in detail. Compared with the electroluminescence spectra of non-NRIDL diodes, the line widths of the spectra of the MOLEDs are narrower and all the peaks enhance. The results show that the new structure is beneficial to improve the performance and reduce the thickness of microcavity devices.展开更多
A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consum...A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs.展开更多
In this work, we report the preparation of a series of electroluminescent (EL) devices based on a high-performance polymer, poly(p-phenylene benzobisoxazole) (PBO), and their optoelectronic properties, which hav...In this work, we report the preparation of a series of electroluminescent (EL) devices based on a high-performance polymer, poly(p-phenylene benzobisoxazole) (PBO), and their optoelectronic properties, which have been rarely explored. The device structure is optimised using a complex cathode structure of tris-(8-hydoxyquinoline) aluminium (Alq3)/LiF/Al. By tuning the thickness of the Alq3 layer, we improve the device efficiency dramatically in an optimized condition. Further analysis reveals that the Alq3 layer in the complex cathode structure acts as a hole blocker in addition to its electron-injection role. A green light emission with a maximum brightness of 8.7×103 cd/m2 and a moderate current efficiency of 4.8 cd/A is obtained. These values are the highest ever reported for PBO devices. The high operational stability demonstrated by the present device makes it a promising tool for display and lighting applications. A new material is added to the selection of polymers used in this field up to now.展开更多
The luminous efficiency of organic light-emitting devices depends on the recombination probability of electrons injected at the cathode and holes at the anode. A theoretical model to calculate the distribution of curr...The luminous efficiency of organic light-emitting devices depends on the recombination probability of electrons injected at the cathode and holes at the anode. A theoretical model to calculate the distribution of current densities and the recombination rate in organic single layer devices is presented taking into account the charge injection process at each electrode, charge transport and recombination in organic layer. The calculated results indicate that efficient single-layer devices are possible by adjusting the barrier heights at two electrodes and the carrier mobilities. Lowering the barrier heights can improve the electroluminescent(EL) efficiency pronouncedly in many cases, and efficient devices are still possible using an ohmic contact to inject the low mobility carrier, and a contact limited contact to inject the high mobility carrier. All in all, high EL efficiency needs to consider sufficient recombination, enough injected carriers and well transport.展开更多
Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excit...Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excitons in the ratio of 1:3.Exciton statistics determines that the upper limit of internal quantum efficiency is 25%in fluorescent devices,since only singlet exciton can decay radiatively.However,both experimental and theoretical evidence indicate that the actual efficiency can exceed the exciton statistics limit of 25%by utilizing materials with special electronic structure and optimized device structures.These results bring light to break through the exciton statistics limit and develop new-generation fluorescent materials with low cost and high efficiency.Recently,the exciton statistics,which has attracted great attention in the past decade,is being rejuvenated due to the discovery of some fluorescent materials with abnormally high efficiencies.In view of their significance in theoretical research of organic semiconductors and developing new-generation OLED materials,such materials are widely investigated in both academic institutions and industry.Several key issues still require further clarification for this kind of materials,such as the molecular design concepts.Herein,we review the progress of the materials with efficiency exceeding the exciton statistics limit,and the routes to improve exciton utilization efficiency.In the end,we present an innovative pathway to fully harvest the excitons in fluorescent devices,namely,"hot exciton"model and relevant fluorescence material with hybridized local and charge-transfer(HLCT)excited state.展开更多
The organic light-emitting devices(OLEDs) using 4,4',4''-tris{N-(3-methylphenyl)-N-phenylamin}triphenylamine(m-MTDATA) and MoO_3 or 1,3,5-triazo-2,4,6-triphosphorine-2,2,4,4,6,6-tetrachloride(TAPC) and MoO...The organic light-emitting devices(OLEDs) using 4,4',4''-tris{N-(3-methylphenyl)-N-phenylamin}triphenylamine(m-MTDATA) and MoO_3 or 1,3,5-triazo-2,4,6-triphosphorine-2,2,4,4,6,6-tetrachloride(TAPC) and MoO_3 as the hole-injection layer(HIL) were fabricated. MoO_3 can be expected to be a good injection layer material and thus enhance the emission performance of OLED. The highest occupied molecular(HOMO) of MoO_3 is between those of m-MTDATA or TAPC and N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine(NPB),which reduces the hole-injection barrier and improves the luminance of the OLEDs. The current efficiency is improved compared with that of the device without the MoO_3 layer. The highest luminous efficiency of the device with 2-nm-thick MoO_3 as HIL is achieved as 5.27 cd/A at 10 V,which is nearly 1.2 times larger than that of the device without it. Moreover,the highest current efficiency and power efficiency of the device with the structure indium-tin oxide(ITO)/TAPC(40 nm)/MoO_3(2 nm)/Tc Ta:Ir(ppy)3(10%,10 nm)/ tris-(8-hydroxyquinoline) aluminium(Alq)(60 nm)/Li F(1 nm)/Al are achieved as 37.15 cd/A and 41.23 lm/W at 3.2 V and 2.8 V,respectively.展开更多
文摘Organic multiple quantum wells(OMQWs) consisting of alternating layers of organic materials have been fabricated from tris(8-hydroxyquinoline) aluminum(Alq)and 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,3,3-oxadiazole(PBD) by a multisource-type high-vacuum organic molecular deposition.From the small-angle X-ray diffraction patterns of Alq/PBD OMQWs,a periodically layered structure is confirmed through the entire stack.The Alq layer thickness in the OMQWs was varied from 1 nm to 4 nm.From the optical absorption,photoluminescence and electroluminescence measurements,it is found that the exciton energy shifts to higher energy with decreasing Alq layer thickness,The changes of the exciton energy could be interpreted as the confinement effects of exciton in the Alq thin layers.Narrowing of the emission spectrum has also been observed for the electroluminescent devices (ELDs) with the OMQWs structure at room temperature.
文摘Double-layer organic electroluminescent devices have been constructed. A new fluorescent dye, 9,10-bis(phenylethynyl)anthracence, was chosen as the dopant which was molecularly dispersed in the polymer film, and green light was observed from the device with luminance of 130cd/m(2) at 17V.
文摘Superlattices consisting of alternating layers of organic/polymeric materials have been fabricated from tris(8-hydroxyquinoline)aluminum(Alq3) and poly(N-vinylcarbazole)(PVK) by a multisource-type high-vacuum organic molecular deposition.The characteristics of superlattice structures are determined by the small-angle X-ray diffraction,optical absorption and photoluminescence.The electroluminescent devices with the superlattice structure have also been fabricated and the emission characteristics are discussed.
文摘A gadolinium ternary complex, tris(1 phenyl 3 methyl 4 isobutyryl 5 pyrazolone) (2, 2′ dipyridyl) gadolinium Gd(PMIP) 3(Bipy) was synthesized and used as a light emitting material in the organic electroluminescent devices. The devices exhibited the green electroluminescent (EL) emission peaking at 513 nm, originating from the Gd(PMIP) 3(Bipy). By improving the configuration, the device with a structure of ITO/poly(N vinylcarbazole) (PVK) (40 nm)/Gd(PMIP) 3(Bipy) (40 nm)/tris (8 hydroxyquinoline) aluminum (ALQ) (40 nm)/Mg∶Ag(200 nm)/Ag(100 nm) showed higher performance and a maximum luminance of 340 cd·m -2 at 18 V.
文摘Long life green emitting matrix display based on organic light emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm 2, and the pixel gap 0.1 mm. An image with no crosstalk between pixels is obtained. The average luminance of these pixels at duty cycle of 1/64 is 100 cd/m 2, and the power consumption is 0.6 W. The dark room contrast of 1∶100 is achieved without using a polarization filter.
基金This was work supported in part by the National Nature Science Foundation oChina under Grant No. 60425101.
文摘High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyl- 1,1'-biphenyl-4,4'- diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.
基金supported by the National Natural Science Foundation of China(Grant Nos.61307036 and 61307037)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Chinathe University Science Research Project of Jiangsu Province,China(Grant No.12KJB510028)
文摘A controllable etching process for indium zinc oxide (IZO) films was developed by using a weak etchant of oxalic acid with a slow etching ratio. With controllable etching time and temperature, a patterned IZO electrode with smoothed surface morphology and slope edge was achieved. For the practical application in organic light emitting devices (OLEDs), a sup- pression of the leak current in the current-voltage characteristics of OLEDs was observed. It resulted in a 1.6 times longer half lifetime in the IZO-based OLEDs compared to that using an indium tin oxide (ITO) anode etched by a conventional strong etchant of aqua regia.
基金Project supported by the National Natural Science Foundation of China(Grant No.60906022)the Natural Science Foundation of Tianjin,China(Grant No.10JCYBJC01100)+1 种基金the Key Science and Technology Support Program of Tianjin,China(Grant No.14ZCZDGX00006)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120℃. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120℃ annealed pentacene film and n-doped electron transport layer(ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m^2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device.
基金Supported by the National Natural Science Foundation of China(No. 20372060), the Key National Natural Science Foundationof China(No. 20131010), the Important National Natural Science Foundation of China(No. 20490210), the"863"Program(Nos.2002AA302105 and 2002AA324080) and Foreign Communion &Cooperation of National Natural Science Foundation of China(No.20340420326).
文摘The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.
基金supported by the National Natural Science Foundation of China(Grant No.60906022)the Natural Science Foundation of Tianjin,China(Grant No.10JCYBJC01100)+2 种基金the Scientific Developing Foundation of Tianjin Education Commission,China(Grant No.2011ZD02)the Key Science and Technology Support Program of Tianjin,China(Grant No.14ZCZDGX00006)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first group of devices based on Alq3, we insert a thin Al layer of different thickness into Cs2CO3 injection layer, and the device's maximum current efficiency of 6.5 cd/A is obtained when the thickness of the thin Al layer is 0.4 nm. However, when the thickness of Al layer is 0.8 nm, the capacity of electron injection is the strongest. To validate the universality of this approach, then we fabricate another group of devices based on another blue emitting material. The maximum current efficiency of the device without and with a thin Al layer is 4.51 cd/A and 4.84 cd/A, respectively. Inserting a thin Al layer of an appropriate thickness into Cs2CO3 layer can result in the reduction of electron injection barrier, enhancement of the electron injection, and improvement of the performance of OLEDs. This can be attributed to the mechanism that thermally evaporated Cs2CO3 decomposes into cesium oxides, the thin Al layer reacts with cesium oxides to form Al–O–Cs complex, and the amount of the Al–O–Cs complex can be controlled by adjusting the thickness of the thin Al layer.
基金Natural Science Research Item of Education Department of Henan Province(2008A430009)Doctor Foundation of Henan Polytechnic University(B2008-22)
文摘A new structure containing negative refractive index dielectric layer(NRlDL) is introduced into microcavity. The properties of the new mierocavity organic light-emitting devices(MOLEDs) are investigated. In the experiment, the transfer matrix method is adopted. The dependence of reflectance and transmittance on the refractive index and thickness of NRIDL are analyzed in detail. Compared with the electroluminescence spectra of non-NRIDL diodes, the line widths of the spectra of the MOLEDs are narrower and all the peaks enhance. The results show that the new structure is beneficial to improve the performance and reduce the thickness of microcavity devices.
基金Supported by the Nanjing University of Telecommunication and Posts under Grant No NY212010the National Natural Science Foundation of China under Grant Nos 91233117,50973104 and 51333007+2 种基金the Natural Science Fund of Jiangsu Province under Grant No BK2012834the National Basic Research Program of China under Grant No 2015CB932200the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs.
基金Project supported by the National Natural Science Foundation of China(Grant No.21174016)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120009110031)the 111 Project of China(Grant No.B08002)
文摘In this work, we report the preparation of a series of electroluminescent (EL) devices based on a high-performance polymer, poly(p-phenylene benzobisoxazole) (PBO), and their optoelectronic properties, which have been rarely explored. The device structure is optimised using a complex cathode structure of tris-(8-hydoxyquinoline) aluminium (Alq3)/LiF/Al. By tuning the thickness of the Alq3 layer, we improve the device efficiency dramatically in an optimized condition. Further analysis reveals that the Alq3 layer in the complex cathode structure acts as a hole blocker in addition to its electron-injection role. A green light emission with a maximum brightness of 8.7×103 cd/m2 and a moderate current efficiency of 4.8 cd/A is obtained. These values are the highest ever reported for PBO devices. The high operational stability demonstrated by the present device makes it a promising tool for display and lighting applications. A new material is added to the selection of polymers used in this field up to now.
基金Excellent Youth Foundation of Hunan Province(03JJY1008) Science Foundation for Post-doctorate of China(2004035083) Science Foundation of Central South University( 0601059)
文摘The luminous efficiency of organic light-emitting devices depends on the recombination probability of electrons injected at the cathode and holes at the anode. A theoretical model to calculate the distribution of current densities and the recombination rate in organic single layer devices is presented taking into account the charge injection process at each electrode, charge transport and recombination in organic layer. The calculated results indicate that efficient single-layer devices are possible by adjusting the barrier heights at two electrodes and the carrier mobilities. Lowering the barrier heights can improve the electroluminescent(EL) efficiency pronouncedly in many cases, and efficient devices are still possible using an ohmic contact to inject the low mobility carrier, and a contact limited contact to inject the high mobility carrier. All in all, high EL efficiency needs to consider sufficient recombination, enough injected carriers and well transport.
基金financially supported by the National Science Foundation of China(51073069,51273078)the National Basic Research Program of China(2013CB834801)
文摘Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excitons in the ratio of 1:3.Exciton statistics determines that the upper limit of internal quantum efficiency is 25%in fluorescent devices,since only singlet exciton can decay radiatively.However,both experimental and theoretical evidence indicate that the actual efficiency can exceed the exciton statistics limit of 25%by utilizing materials with special electronic structure and optimized device structures.These results bring light to break through the exciton statistics limit and develop new-generation fluorescent materials with low cost and high efficiency.Recently,the exciton statistics,which has attracted great attention in the past decade,is being rejuvenated due to the discovery of some fluorescent materials with abnormally high efficiencies.In view of their significance in theoretical research of organic semiconductors and developing new-generation OLED materials,such materials are widely investigated in both academic institutions and industry.Several key issues still require further clarification for this kind of materials,such as the molecular design concepts.Herein,we review the progress of the materials with efficiency exceeding the exciton statistics limit,and the routes to improve exciton utilization efficiency.In the end,we present an innovative pathway to fully harvest the excitons in fluorescent devices,namely,"hot exciton"model and relevant fluorescence material with hybridized local and charge-transfer(HLCT)excited state.
基金supported by the Major Project of Science and Technology Office of Fujian Province of China(No.2014H0042)the Natural Science Foundation of Fujian Province of China(No.2015J01664)the Project of Science and Technology Research of Quanzhou City in Fujian Province of China(Nos.2013Z125 and 2014Z137)
文摘The organic light-emitting devices(OLEDs) using 4,4',4''-tris{N-(3-methylphenyl)-N-phenylamin}triphenylamine(m-MTDATA) and MoO_3 or 1,3,5-triazo-2,4,6-triphosphorine-2,2,4,4,6,6-tetrachloride(TAPC) and MoO_3 as the hole-injection layer(HIL) were fabricated. MoO_3 can be expected to be a good injection layer material and thus enhance the emission performance of OLED. The highest occupied molecular(HOMO) of MoO_3 is between those of m-MTDATA or TAPC and N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine(NPB),which reduces the hole-injection barrier and improves the luminance of the OLEDs. The current efficiency is improved compared with that of the device without the MoO_3 layer. The highest luminous efficiency of the device with 2-nm-thick MoO_3 as HIL is achieved as 5.27 cd/A at 10 V,which is nearly 1.2 times larger than that of the device without it. Moreover,the highest current efficiency and power efficiency of the device with the structure indium-tin oxide(ITO)/TAPC(40 nm)/MoO_3(2 nm)/Tc Ta:Ir(ppy)3(10%,10 nm)/ tris-(8-hydroxyquinoline) aluminium(Alq)(60 nm)/Li F(1 nm)/Al are achieved as 37.15 cd/A and 41.23 lm/W at 3.2 V and 2.8 V,respectively.