Management of MSW(Municipal Solid Waste)is a major downside in most of the biggest cities.The composting of the organic fraction of MSW is one of the oldest and simplest ways of organic waste stabilization.It is a sel...Management of MSW(Municipal Solid Waste)is a major downside in most of the biggest cities.The composting of the organic fraction of MSW is one of the oldest and simplest ways of organic waste stabilization.It is a self-heating biological conversion that generates appropriate finished merchandise such as soil conditioner or fertilizers.Mexico City generates about 12,500 ton/day of MSW,44%of it is food scraps and yard trimmings which are the OFMSW(Organic Fraction of Municipal Solid Waste),2,500 ton/day of it is composted at the BPCP(Bordo Poniente Composting Plant)yielding 500 ton/day of compost.The purpose of this study was to evaluate three treatments to accelerate the composting process,so eventually the city could increase the amount of the OFMSW at BPCP.We compared three different treatments;one of them showed a significant reduction in time of the composting process(p≤0.05)i.e.,it took less time to reach the thermophilic stage,maturity and stabilization phases.Maturity was achieved at 35 days and 60 days to stabilize.We conclude that shredding the feedstock plus leachate inoculum addition at the beginning of the process,reduces the composting time in about 61%with respect to the time it takes at the BPCP,where lasted 90 days.展开更多
Three treatments were tested to investigate the release concentrations of volatile organic compounds (VOCs) during the bio-drying of municipal solid waste (MSW) by the aerobic and combined hydrolytic-aerobic proce...Three treatments were tested to investigate the release concentrations of volatile organic compounds (VOCs) during the bio-drying of municipal solid waste (MSW) by the aerobic and combined hydrolytic-aerobic processes.Results showed that VOCs were largely released in the first 4 days of bio-drying and the dominant components were:dimethyl disulfide,dimethyl sulfide,benzene,2-butanone,limonene and methylene chloride.Thus,the combined hydrolytic-aerobic process was suggested for MSW bio-drying due to fewer aeration quantities in this phase when compared with the aerobic process,and the treatment strategies should base on the key properties of these prominent components.Malodorous sulfur compounds and terpenes were mainly released in the early phase of bio-drying,whereas,two peaks of release concentrations appeared for aromatics and ketones during bio-drying.Notably,for the combined hydrolytic-aerobic processes there were also high concentrations of released aromatics in the shift from hydrolytic to aerobic stages.High concentrations of released chlorinateds were observed in the later phase.For the VOCs produced during MSW bio-drying,i.e.,malodorous sulfur compounds,terpenes and chlorinateds,their release concentrations were mainly determined by production rates;for the VOCs presented initially in MSW,such as aromatics,their transfer and transport in MSW mainly determined the release concentrations.展开更多
A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasi...A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 ℃ to 20 ℃ suddenly, 2 h time is needed for temperature decrease and recovery. Under the conditions of 8.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 ℃) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation, (3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay, hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation: (4) the thermophilic microorganisms were highly resilient to temperature fluctuation.展开更多
Utilisation of Municipal Solid Waste is important to curb the ever rising demand of scarce land for its disposal. Changing life style patterns, particularly in urban areas, has led to increase in generation of MSW. Mu...Utilisation of Municipal Solid Waste is important to curb the ever rising demand of scarce land for its disposal. Changing life style patterns, particularly in urban areas, has led to increase in generation of MSW. Municipal solid waste from Indian cities estimated to have 40% - 60% organic matter, which could be recycled as compost. The most suitable way to recycle it with low investment is aerobic composting using windrow method. With the compliance of Municipal Solid Waste (Management and Handling) Rules 2000, many cities in India are making compost with organic portion of MSW. Before applying MSWC for agricultural uses, it is important to inventories heavy metals in compost to assess its toxicity. In the present study the compost samples were quantified for its toxicity from three highly populated cities of India, i.e., Delhi (Capital of India), Ahmedabad (Gujarat) and Bangalore (Karnataka). The MSWC samples were analysed for total heavy metals and in extractable fractions. Few samples were found with higher concentration of metals then the prescribed limits for its application as compost in Indian MSW rules, whereas, samples have not showed significant heavy metals concentration in extractable fractions. Therefore, studied MSW compost samples had demonstrated its suitability to use as green compost.展开更多
The problem of municipal solid waste (MSW) management has been an issue of global concern in recent times and has engaged governments and local authorities in their quest to manage solid waste in a sustained manner. O...The problem of municipal solid waste (MSW) management has been an issue of global concern in recent times and has engaged governments and local authorities in their quest to manage solid waste in a sustained manner. One proposition which has the potential of solving three problems at the same time is the use of the biodegradable component of MSW as a source of energy to augment energy supply. This research therefore assessed the use of the organic fraction of MSW as an eco-efficient energy source in Ghana. A study of Ghana’s solid waste profile was undertaken and the fraction of biodegradable component was found to be approximately 60%, with a heating value of 17 MJ/kg and a moisture content of 50%. Moreover, it was established that 0.5 kg of solid waste is generated daily by each Ghanaian, meaning that about 5610 tons of the organic fraction could be made available every day to generate energy to the national grid. It was also established that waste disposal in Ghana is largely by way of open dumping as primary collection of waste from households in Ghana is limited to high-income communities which represent only 11% of the population, whereas secondary collection from transfer points to the disposal facilities is inefficient. With representative power output of 1.66 MWh/tonne a total of 3320 GWh of energy can be produced annually from the 4 proposed plants, generating net revenue of about $111,600,000. As an optimizing step, a waste incineration scheme was suggested in which the off-gases produced from organic waste combustion could be used to produce electrical power with steam in a multi-stage heat exchanger-steam turbine configuration, and the off gases again used for pre-drying of the organic waste in a cycle. A state-of-the art waste incineration technology was used as a model and adapted to suit Ghana’s tropical conditions. MSW combustion releases less CO2 for the same power output (837 Ib/MWh) than any of the other conventional fuels do, and is therefore a good fuel for the fight against climate change.展开更多
Anaerobic digestion(AD)as a waste management method has the potential to reduce greenhouse gas emissions while pro-ducing renewable energy,making it a viable option for managing the organic fraction of municipal solid...Anaerobic digestion(AD)as a waste management method has the potential to reduce greenhouse gas emissions while pro-ducing renewable energy,making it a viable option for managing the organic fraction of municipal solid waste(OFMSW).OFMSW characteristics can vary depending on factors such as waste source,composition and separation units.The charac-teristics of OFMSW are critical for analyzing and monitoring the AD process to optimize biogas production.In this study,the waste composition and physicochemical characteristics of the mechanically separated OFMSW(ms-OFMSW)were determined at a full-scale AD plant in Turkiye.The ms-OFMSW samples were collected monthly after mechanical separation and were subsequently sent to the anaerobic digester.The composition and physicochemical characteristics of the samples were determined by manual sorting.The results showed that the majority of the ms-OFMSW(76.45%±1.71%)was organic,while 8.99%±1.56%was recyclable and 14.56%±1.69%was non-recyclable.Loss of environmental benefits for the recyclable materials was determined using a free online tool provided by Environmental Protection Agency.Metals(399.7 GJ)and plas-tics(403.7 GJ)both saved nearly the same amount of energy while metals saved the most water(421.8 m3),with the greatest positive impact.Greenhouse benefits ranged from 3 tons to 40 tons of carbon dioxide equivalent for each waste stream.These findings suggest that efficient pre-separation units can improve the anaerobic digestibility of OFMSW,while also providing greater environmental benefits by preventing recyclable waste from the anaerobic digester.In addition to encouraging source separation applications,this study demonstrates the need for improved technologies to separate OFMSW from mixed MSW.展开更多
Fast assessment of the initial carbon to nitrogen ratio(C/N)of organic fraction of municipal solid waste(OFMSW)is an important prerequisite for automatic composting control to improve efficiency and stability of the b...Fast assessment of the initial carbon to nitrogen ratio(C/N)of organic fraction of municipal solid waste(OFMSW)is an important prerequisite for automatic composting control to improve efficiency and stability of the bioconversion process.In this study,a novel approach was proposed to estimate the C/N of OFMSW,where an instance segmentation model was applied to predict the masks for the waste images.Then,by combining the instance segmentation model with the depth-camera-based volume calculation algorithm,the volumes occupied by each type of waste were obtained,therefore the C/N could be estimated based on the properties of each type of waste.First,an instance segmentation dataset including three common classes of OFMSW was built to train mask region-based convolutional neural networks(Mask R-CNN)model.Second,a volume measurement algorithm was proposed,where the measurement result of the object was derived by accumulating the volumes of small rectangular cuboids whose bottom area was calculated with the projection property.Then the calculated volume was corrected with linear regression models.The results showed that the trained instance segmentation model performed well with average precision scores AP_(50)=82.9,AP_(75)=72.5,and mask intersection over unit(Mask IoU)=45.1.A high correlation was found between the estimated C/N and the ground truth with a coefficient of determination R2=0.97 and root mean square error RMSE=0.10.The relative average error was 0.42%and the maximum error was only 1.71%,which indicated this approach has potential for practical applications.展开更多
This paper presents bench scale experiments related to anaerobic co-digestion of aerobic sewage sludge from a pilot WWTP (waste water treatment plants), raw glycerol from a biodiesel industry and food waste. Assays ...This paper presents bench scale experiments related to anaerobic co-digestion of aerobic sewage sludge from a pilot WWTP (waste water treatment plants), raw glycerol from a biodiesel industry and food waste. Assays were conducted in 100 mL non-stirring penicillin vessels, at 30 ℃ and planned according to three optimization phases: (1) binary mixture of sewage sludge and FW (food waste); (2) binary mixture of sewage sludge and glycerol; and (3) ternary mixture of sewage sludge, FW, and glycerol. In the first and second phases, the highest SMP (specific methane production) was achieved by 10% (v/v) FW and 0.5% (v/v) glycerol mixtures. The optimization of the ternary mixture during the third phase was reached by the combination of 10% (v/v) FW and 0.4% (v/v) glycerol. Despite the low SMP value, the addition of glycerol and FW contributed to doubling the SMP value of the sludge sample control.展开更多
The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).Th...The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.展开更多
The technology of steady combustion in a new type of rotary incinerator is firstly discussed. The formation and control of HCl,NOx and SO_(2) during the incineration of sampled municipal organic solid waste are studie...The technology of steady combustion in a new type of rotary incinerator is firstly discussed. The formation and control of HCl,NOx and SO_(2) during the incineration of sampled municipal organic solid waste are studied with the incinerator. Results showed that the new model of rotary incinerator can effectively control and reduce the pollutant formations by post combustion.展开更多
A kinetic study of biogas production from Urban Solid Waste (USW) generated in Dar es Salaam city (Tanzania) is presented. An experimental bioreactor simulating mesophilic conditions of most USW landfills was develope...A kinetic study of biogas production from Urban Solid Waste (USW) generated in Dar es Salaam city (Tanzania) is presented. An experimental bioreactor simulating mesophilic conditions of most USW landfills was developed. The goal of the study was to generate the kinetic order of reaction with respect to biodegradable organic waste and use it to model biogas production from food residues mixed with fruit waste. Anaerobic biodegradation was employed under temperature range of 28℃ - 38℃. The main controls were leachate recirculation and pH adjustments to minimize acid inhibitory effects and accelerate waste biodegradation. The experimental setup comprised of three sets of bioreactors. A biodegradation rate law in differential form was proposed and the numerical values of kinetic order and rate constant were determined using initial rate method as 0.994 and 0.3093 mol0.006·day-1, respectively. Results obtained were consistent with that found in literature and model predictions were in reasonable agreement with experimental data.展开更多
The nuisance from odor caused by municipal solid waste(MSW) is resulting in a growing number of public complaints and concerns. Odor pollution occurs in the initial decomposition stage of MSW, including waste collecti...The nuisance from odor caused by municipal solid waste(MSW) is resulting in a growing number of public complaints and concerns. Odor pollution occurs in the initial decomposition stage of MSW, including waste collection, transportation and early pre-treatment. Furthermore, decomposition takes place in waste facilities that are often close to living areas, which can result in odor impacts on local inhabitants. However, this aspect of odor impact from MSW has not been well studied. In the current study, lab-scale waste cells were designed to simulate MSW storage conditions in the early stage. The characteristics of VOCs emissions with different waste compositions were analyzed. The odor concentration( CO, non-dimensional) method and odor intensity were used for the assessment of odor. Ethanol was the substance with highest emission rate. The release rate of VOCs increased with the growth easily biodegradable waste(EBW). VOCs emissions was reduced by 25% when the proportion of EBW decreased from 60% to 45%. Methyl sulfide, ethanol, dimethyl disulfide and ethyl acetate were identified as typical odorants. The EBW proportion in waste is the main factor significantly influencing odor pollution. The CO was 244.51 for the 60% EBW condition, which was only 61.46 for 15% EBW condition. These study results provide important information for the implementation of a garbage sorting policy and the monitoring of odor pollution from waste management.展开更多
基金This work was supported by the Institute of Science and Technology of Mexico City and the Ministry of Works and Services of the Government of Mexico City.
文摘Management of MSW(Municipal Solid Waste)is a major downside in most of the biggest cities.The composting of the organic fraction of MSW is one of the oldest and simplest ways of organic waste stabilization.It is a self-heating biological conversion that generates appropriate finished merchandise such as soil conditioner or fertilizers.Mexico City generates about 12,500 ton/day of MSW,44%of it is food scraps and yard trimmings which are the OFMSW(Organic Fraction of Municipal Solid Waste),2,500 ton/day of it is composted at the BPCP(Bordo Poniente Composting Plant)yielding 500 ton/day of compost.The purpose of this study was to evaluate three treatments to accelerate the composting process,so eventually the city could increase the amount of the OFMSW at BPCP.We compared three different treatments;one of them showed a significant reduction in time of the composting process(p≤0.05)i.e.,it took less time to reach the thermophilic stage,maturity and stabilization phases.Maturity was achieved at 35 days and 60 days to stabilize.We conclude that shredding the feedstock plus leachate inoculum addition at the beginning of the process,reduces the composting time in about 61%with respect to the time it takes at the BPCP,where lasted 90 days.
基金financially supported by the National Key Technology R&D Program of China (No.2006BAC06B04,2008BAJ08B13)
文摘Three treatments were tested to investigate the release concentrations of volatile organic compounds (VOCs) during the bio-drying of municipal solid waste (MSW) by the aerobic and combined hydrolytic-aerobic processes.Results showed that VOCs were largely released in the first 4 days of bio-drying and the dominant components were:dimethyl disulfide,dimethyl sulfide,benzene,2-butanone,limonene and methylene chloride.Thus,the combined hydrolytic-aerobic process was suggested for MSW bio-drying due to fewer aeration quantities in this phase when compared with the aerobic process,and the treatment strategies should base on the key properties of these prominent components.Malodorous sulfur compounds and terpenes were mainly released in the early phase of bio-drying,whereas,two peaks of release concentrations appeared for aromatics and ketones during bio-drying.Notably,for the combined hydrolytic-aerobic processes there were also high concentrations of released aromatics in the shift from hydrolytic to aerobic stages.High concentrations of released chlorinateds were observed in the later phase.For the VOCs produced during MSW bio-drying,i.e.,malodorous sulfur compounds,terpenes and chlorinateds,their release concentrations were mainly determined by production rates;for the VOCs presented initially in MSW,such as aromatics,their transfer and transport in MSW mainly determined the release concentrations.
基金Project (No. 2002-548) supported by the National Development andReform Commission of China
文摘A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 ℃ to 20 ℃ suddenly, 2 h time is needed for temperature decrease and recovery. Under the conditions of 8.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 ℃) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation, (3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay, hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation: (4) the thermophilic microorganisms were highly resilient to temperature fluctuation.
文摘Utilisation of Municipal Solid Waste is important to curb the ever rising demand of scarce land for its disposal. Changing life style patterns, particularly in urban areas, has led to increase in generation of MSW. Municipal solid waste from Indian cities estimated to have 40% - 60% organic matter, which could be recycled as compost. The most suitable way to recycle it with low investment is aerobic composting using windrow method. With the compliance of Municipal Solid Waste (Management and Handling) Rules 2000, many cities in India are making compost with organic portion of MSW. Before applying MSWC for agricultural uses, it is important to inventories heavy metals in compost to assess its toxicity. In the present study the compost samples were quantified for its toxicity from three highly populated cities of India, i.e., Delhi (Capital of India), Ahmedabad (Gujarat) and Bangalore (Karnataka). The MSWC samples were analysed for total heavy metals and in extractable fractions. Few samples were found with higher concentration of metals then the prescribed limits for its application as compost in Indian MSW rules, whereas, samples have not showed significant heavy metals concentration in extractable fractions. Therefore, studied MSW compost samples had demonstrated its suitability to use as green compost.
文摘The problem of municipal solid waste (MSW) management has been an issue of global concern in recent times and has engaged governments and local authorities in their quest to manage solid waste in a sustained manner. One proposition which has the potential of solving three problems at the same time is the use of the biodegradable component of MSW as a source of energy to augment energy supply. This research therefore assessed the use of the organic fraction of MSW as an eco-efficient energy source in Ghana. A study of Ghana’s solid waste profile was undertaken and the fraction of biodegradable component was found to be approximately 60%, with a heating value of 17 MJ/kg and a moisture content of 50%. Moreover, it was established that 0.5 kg of solid waste is generated daily by each Ghanaian, meaning that about 5610 tons of the organic fraction could be made available every day to generate energy to the national grid. It was also established that waste disposal in Ghana is largely by way of open dumping as primary collection of waste from households in Ghana is limited to high-income communities which represent only 11% of the population, whereas secondary collection from transfer points to the disposal facilities is inefficient. With representative power output of 1.66 MWh/tonne a total of 3320 GWh of energy can be produced annually from the 4 proposed plants, generating net revenue of about $111,600,000. As an optimizing step, a waste incineration scheme was suggested in which the off-gases produced from organic waste combustion could be used to produce electrical power with steam in a multi-stage heat exchanger-steam turbine configuration, and the off gases again used for pre-drying of the organic waste in a cycle. A state-of-the art waste incineration technology was used as a model and adapted to suit Ghana’s tropical conditions. MSW combustion releases less CO2 for the same power output (837 Ib/MWh) than any of the other conventional fuels do, and is therefore a good fuel for the fight against climate change.
基金the Scientific Research Project supported by The Istanbul Technical University,Turkiye(Yagmur Kabakci,Project No.MDK-2019-42183)The authors gratefully acknowledge to Duzce Solid Waste Association,Project No.5218B04.
文摘Anaerobic digestion(AD)as a waste management method has the potential to reduce greenhouse gas emissions while pro-ducing renewable energy,making it a viable option for managing the organic fraction of municipal solid waste(OFMSW).OFMSW characteristics can vary depending on factors such as waste source,composition and separation units.The charac-teristics of OFMSW are critical for analyzing and monitoring the AD process to optimize biogas production.In this study,the waste composition and physicochemical characteristics of the mechanically separated OFMSW(ms-OFMSW)were determined at a full-scale AD plant in Turkiye.The ms-OFMSW samples were collected monthly after mechanical separation and were subsequently sent to the anaerobic digester.The composition and physicochemical characteristics of the samples were determined by manual sorting.The results showed that the majority of the ms-OFMSW(76.45%±1.71%)was organic,while 8.99%±1.56%was recyclable and 14.56%±1.69%was non-recyclable.Loss of environmental benefits for the recyclable materials was determined using a free online tool provided by Environmental Protection Agency.Metals(399.7 GJ)and plas-tics(403.7 GJ)both saved nearly the same amount of energy while metals saved the most water(421.8 m3),with the greatest positive impact.Greenhouse benefits ranged from 3 tons to 40 tons of carbon dioxide equivalent for each waste stream.These findings suggest that efficient pre-separation units can improve the anaerobic digestibility of OFMSW,while also providing greater environmental benefits by preventing recyclable waste from the anaerobic digester.In addition to encouraging source separation applications,this study demonstrates the need for improved technologies to separate OFMSW from mixed MSW.
基金funded by the National Key Research and Development Program of China(Grant No.2018YFD0200800)Key Research and Development Program of Hunan Province(Grant No.2018GK2013)+1 种基金Hunan Modern Agricultural Industry Technology Program(Grant No.201926)Innovation and Entrepreneurship Training Program of Hunan Agricultural University(Grant No.2019062x).
文摘Fast assessment of the initial carbon to nitrogen ratio(C/N)of organic fraction of municipal solid waste(OFMSW)is an important prerequisite for automatic composting control to improve efficiency and stability of the bioconversion process.In this study,a novel approach was proposed to estimate the C/N of OFMSW,where an instance segmentation model was applied to predict the masks for the waste images.Then,by combining the instance segmentation model with the depth-camera-based volume calculation algorithm,the volumes occupied by each type of waste were obtained,therefore the C/N could be estimated based on the properties of each type of waste.First,an instance segmentation dataset including three common classes of OFMSW was built to train mask region-based convolutional neural networks(Mask R-CNN)model.Second,a volume measurement algorithm was proposed,where the measurement result of the object was derived by accumulating the volumes of small rectangular cuboids whose bottom area was calculated with the projection property.Then the calculated volume was corrected with linear regression models.The results showed that the trained instance segmentation model performed well with average precision scores AP_(50)=82.9,AP_(75)=72.5,and mask intersection over unit(Mask IoU)=45.1.A high correlation was found between the estimated C/N and the ground truth with a coefficient of determination R2=0.97 and root mean square error RMSE=0.10.The relative average error was 0.42%and the maximum error was only 1.71%,which indicated this approach has potential for practical applications.
文摘This paper presents bench scale experiments related to anaerobic co-digestion of aerobic sewage sludge from a pilot WWTP (waste water treatment plants), raw glycerol from a biodiesel industry and food waste. Assays were conducted in 100 mL non-stirring penicillin vessels, at 30 ℃ and planned according to three optimization phases: (1) binary mixture of sewage sludge and FW (food waste); (2) binary mixture of sewage sludge and glycerol; and (3) ternary mixture of sewage sludge, FW, and glycerol. In the first and second phases, the highest SMP (specific methane production) was achieved by 10% (v/v) FW and 0.5% (v/v) glycerol mixtures. The optimization of the ternary mixture during the third phase was reached by the combination of 10% (v/v) FW and 0.4% (v/v) glycerol. Despite the low SMP value, the addition of glycerol and FW contributed to doubling the SMP value of the sludge sample control.
文摘The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.
文摘The technology of steady combustion in a new type of rotary incinerator is firstly discussed. The formation and control of HCl,NOx and SO_(2) during the incineration of sampled municipal organic solid waste are studied with the incinerator. Results showed that the new model of rotary incinerator can effectively control and reduce the pollutant formations by post combustion.
文摘A kinetic study of biogas production from Urban Solid Waste (USW) generated in Dar es Salaam city (Tanzania) is presented. An experimental bioreactor simulating mesophilic conditions of most USW landfills was developed. The goal of the study was to generate the kinetic order of reaction with respect to biodegradable organic waste and use it to model biogas production from food residues mixed with fruit waste. Anaerobic biodegradation was employed under temperature range of 28℃ - 38℃. The main controls were leachate recirculation and pH adjustments to minimize acid inhibitory effects and accelerate waste biodegradation. The experimental setup comprised of three sets of bioreactors. A biodegradation rate law in differential form was proposed and the numerical values of kinetic order and rate constant were determined using initial rate method as 0.994 and 0.3093 mol0.006·day-1, respectively. Results obtained were consistent with that found in literature and model predictions were in reasonable agreement with experimental data.
基金financially supported by the Nation Natural Science Foundation of China (No. 51808520)the State Environmental Protection Key Laboratory of Odor Pollution Control (No. 20200502)。
文摘The nuisance from odor caused by municipal solid waste(MSW) is resulting in a growing number of public complaints and concerns. Odor pollution occurs in the initial decomposition stage of MSW, including waste collection, transportation and early pre-treatment. Furthermore, decomposition takes place in waste facilities that are often close to living areas, which can result in odor impacts on local inhabitants. However, this aspect of odor impact from MSW has not been well studied. In the current study, lab-scale waste cells were designed to simulate MSW storage conditions in the early stage. The characteristics of VOCs emissions with different waste compositions were analyzed. The odor concentration( CO, non-dimensional) method and odor intensity were used for the assessment of odor. Ethanol was the substance with highest emission rate. The release rate of VOCs increased with the growth easily biodegradable waste(EBW). VOCs emissions was reduced by 25% when the proportion of EBW decreased from 60% to 45%. Methyl sulfide, ethanol, dimethyl disulfide and ethyl acetate were identified as typical odorants. The EBW proportion in waste is the main factor significantly influencing odor pollution. The CO was 244.51 for the 60% EBW condition, which was only 61.46 for 15% EBW condition. These study results provide important information for the implementation of a garbage sorting policy and the monitoring of odor pollution from waste management.