期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Synthesis of covalent organic framework materials and their application in the field of sensing
1
作者 Weiyu Zhang Shiwei Liu +2 位作者 Qihua Sun Ning Tian Zhaofeng Wu 《Nano Research》 SCIE EI CSCD 2024年第1期162-195,共34页
Covalent organic frameworks(COFs)are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks.Due to their large surface area,high intrinsic pore space,goo... Covalent organic frameworks(COFs)are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks.Due to their large surface area,high intrinsic pore space,good crystallization properties,high stability,and designability of the resultant units,COFs are widely studied and used in the fields of gas adsorption,drug transport,energy storage,photoelectric catalysis,electrochemistry,and sensors.In recent years,the rapid development of the Internet of Things and people’s yearning for a better life have put forward higher and more requirements for sensors,which are the core components of the Internet of Things.Therefore,this paper reviews the recent progress of COFs in synthesis methods and sensing applications,especially in the last five years.This paper first introduces structure,properties,and synthesis methods of COFs and discusses advantages and disadvantages of different synthesis methods.Then,the research progress of COFs in different sensing fields,such as metal ion sensors,gas sensors,biomedical sensors,humidity sensors,and pH sensors,is introduced systematically.Conclusions and prospects are also presented in order to provide a reference for researchers concerned with COFs and sensors. 展开更多
关键词 covalent organic framework materials structural design and synthesis sensing application gas sensors
原文传递
Applications of covalent organic frameworks(COFs):From gas storage and separation to drug delivery 被引量:13
2
作者 Ming-Xue Wu Ying-Wei Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第6期1135-1143,共9页
Covalent organic frameworks(COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements(B,C,N,O,Si) and linked by robust covalent bonds to endow such material ... Covalent organic frameworks(COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements(B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery. 展开更多
关键词 Covalent organic frameworks Drug delivery Porous materials Synthesis
原文传递
Assemblies of covalent organic framework microcrystals:multiple-dimensional manipulation for enhanced applications 被引量:5
3
作者 Fuyu Yuan Jing Tan Jia Guo 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第2期143-152,共10页
Covalent organic frameworks (COFs) are well known as the next generation of shape-persistent zeolite analogues, which have brought new impetus to the development of porous organic materials as well as two-dimensional ... Covalent organic frameworks (COFs) are well known as the next generation of shape-persistent zeolite analogues, which have brought new impetus to the development of porous organic materials as well as two-dimensional polymers. Since the advent of COFs in 2005, many striking findings have definitely proven their great potentials expanding applications across energy,environment and healthcare fields. With thorough exploration over a decade, research interest has been drawn on the scientific challenges on chemistry, while making full play of COF values has remained far from satisfactory yet. Thus opening an avenue to modulating COF assemblies on the multi-scale is no longer just an option, but a necessity for matching the application requirements with enhanced performances. In this mini-review, we summarize the recent progress on design of nanoscale COFs with varying forms. Detailed description is concentrated on the synthetic strategies of COF assemblies such as spheres, fibers,tubes, coatings and films, thereby shedding light on the flexible manipulation over dimensions, compositions and morphologies.Meanwhile, the advanced applications of nanoscale COFs have been discussed here with comparison of their bulky counterparts. 展开更多
关键词 covalent organic frameworks controllable synthesis porous materials nanoscale
原文传递
MoS_(2) wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption 被引量:12
4
作者 Juhua Luo Mengna Feng +3 位作者 Ziyang Dai Chenye Jiang Wei Yao Naixin Zhai 《Nano Research》 SCIE EI CSCD 2022年第7期5781-5789,共9页
Designing electromagnetic wave absorption(EMWA)materials with wide bandwidth,strong absorption,and light weight is still a great challenge for practical applications.Herein,the novel nitrogen doped carbon(NDC)/MoS_(2)... Designing electromagnetic wave absorption(EMWA)materials with wide bandwidth,strong absorption,and light weight is still a great challenge for practical applications.Herein,the novel nitrogen doped carbon(NDC)/MoS_(2) composite with rationally designed composition and structure was developed.The NDC particles were introduced into MoS_(2) nanosheets through the calcination of ZIF-8 precursor and consequent hydrothermal process.A series of characterizations were carried out to investigate the physical properties of the as-prepared nanocomposites.The NDC particles exhibited the shape of rhombic dodecahedron with the size of about 500 nm,which were decorated on flower-shaped MoS_(2) with the size of about 3μm.With the increasing NDC content,the absorbing properties of NDC/MoS_(2) composites increased firstly and then decreased.The features of NDC/MoS_(2) composite including interconnected porous structure,nitrogen dopant,and appropriate electrical conductivity gave rise to the polarization,multiple reflection,multiple scattering,and impedance matching,resulting in the outstanding EMWA performance.With a filler loading ratio of 30 wt.%,the optimized EMWA property can be achieved when the mass ratio of NDC to MoS_(2) was adjusted to be 1:1.At a coating thickness of 3.0 mm,the effective EMWA bandwidth(<−10 dB)reached 6.08 GHz(8.56–14.64 GHz).These satisfactory achievements provide a way for the reasonable design of high-performance EMWA and new ideas for future research on wideband EMWA. 展开更多
关键词 metal organic framework materials nitrogen doped carbon molybdenum disulfide wideband absorption
原文传递
Stabilizing photo-induced vacancy defects in MOF matrix for highperformance SERS detection 被引量:1
5
作者 Hongzhao Sun Ge Song +3 位作者 Wenbin Gong Weibang Lu Shan Cong Zhigang Zhao 《Nano Research》 SCIE EI CSCD 2022年第6期5347-5354,共8页
Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering(SERS)sensing,photoca... Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering(SERS)sensing,photocatalysis,and photovoltaic applications.However,the long-term maintenance and use of photo-induced vacancy defects remain elusive,because of their rapid self-healing upon air exposure.In this study,we demonstrate that photo-induced oxygen vacancy(PIVO)defects can be stabilized by the photoexcitation of metal–organic framework(MOF)materials,which is crucial for SERS analysis.The PIVO defects in MOF materials are stable for at least two weeks in the ambient atmosphere,owing to the combination of steric hindrance and electron delocalization around vacancy defects,which significantly contrasts the short lifetime(within minutes)of PIVO defects in metal-oxide semiconductors.With the formation of stable PIVO defects,a prominent SERS enhancement surpassing that of pristine MOFs is achieved,accompanied with a reduced limit of detection by three orders of magnitude.Moreover,the additional SERS enhancement rendered by PIVO defects can be stably retained and is effective for monitoring various small molecules,such as dopamine and bisphenol A. 展开更多
关键词 stable photo-induced vacancy defects metal−organic framework materials steric hindrance electron delocalization Raman spectroscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部