The heat transfer equation is used to determine the heat flow by conduction through a composite material along the real axis.An analytical dimensionless analysis is implemented in the framework of a separation of vari...The heat transfer equation is used to determine the heat flow by conduction through a composite material along the real axis.An analytical dimensionless analysis is implemented in the framework of a separation of variables method(SVM).This approach leads to an Eigenvalues problem that is solved by the Newton’s method.Two types of dynamics are found:An unsteady condition(in the form of jumps or drops in temperatures depending on the considered case),and a permanent equilibrium(tending to the ambient temperature).The validity and effectiveness of the proposed approach for any number of adjacent layers is also discussed.It is shown that,as expected,the diffusion of the temperature is linked to the ratio of the thermo-physical properties of the considered layers and their number.展开更多
This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) ...This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.展开更多
Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoel...Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoelectric conversion element), because the initial investment is large. The final purpose of this research is development of the low temperature difference drive engine supposing use in a hot-springs resort as a power source for electric power generation. In order that a traveler may look at and delight a motion of an engine, it is made to drive at low-speed number of rotations. An engine cycle of this study is aimed at the development of Stirling cycle engine which can maintain high efficiency in small size. This kind of engine has simple structure;it brings low cost, and it is easy to perform maintenance. However, it is difficult to obtain enough output by this type of engine, because of its low temperature difference. This paper deals with the heat transfer characteristic that the working fluid including a phase change material flows into the heating surface from the narrow path. In order to increase the amount of the heat transmission, Diethylether is added to the working fluid. Diethylether is selected as a phase change material (PCM) that has the boiling point which exists between the heat source of high temperature and low temperature. The parameters of the experiment are additive amount of PCM, rotational speed of the displacer piston and temperature of heat transfer surface. It is shown that it is possible to make exchange of heat amount increase by adding phase change material. The result of this research shows the optimal condition of the difference in temperature in heat processing, number of revolutions, and addition concentration of PCM.展开更多
In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for app...In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for applications in efficient and ultrafast thermal modulation and energy conversion. Recently, hyperbolic materials, an important class of anisotropic materials with hyperbolic isofrequency contours, have been intensively investigated. As an exotic optical platform, hyperbolic materials bring tremendous new opportunities for NFRHT from theoretical advances to experimental designs. To date, there have been considerable achievements in NFRHT for hyperbolic materials, which range from the establishment of different unprecedented heat transport phenomena to various potential applications. This review concisely introduces the basic physics of NFRHT for hyperbolic materials, lays out the theoretical methods to address NFRHT for hyperbolic materials, and highlights unique behaviors as realized in different hyperbolic materials and the resulting applications. Finally, key challenges and opportunities of the NFRHT for hyperbolic materials in terms of fundamental physics, experimental validations, and potential applications are outlined and discussed.展开更多
In the present work,effects of various heat transfer fluids on the discharging performance of a phase change material(PCM) included cylindrical container are numerically assessed during forced convection.The heat tran...In the present work,effects of various heat transfer fluids on the discharging performance of a phase change material(PCM) included cylindrical container are numerically assessed during forced convection.The heat transfer fluid air,hydrogen,water and nanofluid with alumina particles are used and the the geometric variation of the PCM embedded region is also considered.The finite element method is used as the solver.Dynamic features of heat exchange with various phases are explored for different heat transfer fluid types,Reynolds number(between 100 and 300) and PCM embedded region geometric variation(h_(x)between 0.01 d_(1) and 0.65 d_(1),hybetween 0.1 h_(1) and 0.4 h_(1)).It is observed that discharging time is significantly influenced by the heat transfer fluid type while full phase transition time for air is obtained as more than 10 times when hydrogen is utilized as heat transfer fluid.The best performance is achieved with nanofluid.When the PCM integrated region size is reduced,discharging time is generally reduced while due to the form of the geometry,vortex formation is established in the PCM region.This results in performance degeneration at the highest radius and height of the inner cylinder.Discharging time increases by about 12% when radius of the inner cylinder is increased from h_(x)=0.35 d_(1) to h_(x)=0.45 d_(1).Dynamic features of PCM temperature and liquid fraction are affected with Reynolds number while discharging time is reduced by about 48% when configurations with the lowest and highest Reynolds number are compared.展开更多
A three-dimensional viscous-plastic.finite element model is established based on computational fluid mechanics. The material during the welding process is considered as non-Newtonian fluid abided by Norton-Hoff consti...A three-dimensional viscous-plastic.finite element model is established based on computational fluid mechanics. The material during the welding process is considered as non-Newtonian fluid abided by Norton-Hoff constitutive law, and viscous dissipation is assumed as the unique heat source. The model is used to numerically simulate the material flow and heat transfer in friction stir welding, and capture some useful process characteristics, .such as heat generation, temperature distribution and fluid.flow; besides, the velocity field is used to calculate streamlines of material flow, and the dimension of the deformation zone is measured.展开更多
In thermal systems such as solar thermal and waste heat recovery systems, the available energy supply does not usually coincide in time with the process demand. Hence some form of thermal energy storage (TES) is neces...In thermal systems such as solar thermal and waste heat recovery systems, the available energy supply does not usually coincide in time with the process demand. Hence some form of thermal energy storage (TES) is necessary for the most effective utilization of the energy source. This study deals with the experimental evaluation of thermal performance of a packed bed latent heat TES unit integrated with solar flat plate collector. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the solar collector to the storage tank also acts as sensible heat storage material. Charging experiments were carried out at varying inlet fluid temperatures to examine the effects of porosity and HTF flow rate on the storage unit performance. The performance parameters such as instantaneous heat stored, cumulative heat stored, charging rate and system efficiency are studied. Discharging experiments were carried out by both continuous and batchwise processes to recover the stored heat, and the results are presented.展开更多
This paper presents results of an experimental investigation carried out to determine the effects of surface material on nucleate pool boiling heat transfer of refrigerant R113. Experiments were performed on horizonta...This paper presents results of an experimental investigation carried out to determine the effects of surface material on nucleate pool boiling heat transfer of refrigerant R113. Experiments were performed on horizontal circular plates of brass, copper and aluminum. The heat transfer coefficient was evaluated by measuring wall superheat and effective heat flux removed by boiling. The experiments were carried out in the heat flux range of 8 to 200 kW/m2. The obtained results have shown significant effect of surface material, with copper providing the highest heat transfer coefficient among the samples, and aluminum the least. There was negligible difference at low heat fluxes, but copper showed 23% better performance at high heat fluxes than aluminum and 18% better than brass.展开更多
We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estima...We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estimate the device temperature, which is linearly with electrical input power. The simulation results show that there is almost no temperature gradient within the OLED device working under steady state conditions. Furthermore, thermal analysis simulation results show that the surface properties (convective heat transfer coetficient and surface emissivity) of the substrate or cathode can significantly affect the temperature distribution of the OLED.展开更多
The objective of this work is to examine how temperature-dependent thermal conductivity and concentration-dependent molecular diffusion affect Reiner-Philippoff nanofluid flow past a nonlinear stretching sheet. At the...The objective of this work is to examine how temperature-dependent thermal conductivity and concentration-dependent molecular diffusion affect Reiner-Philippoff nanofluid flow past a nonlinear stretching sheet. At the interface of the elongated surface zero-mass flux and melting heat condition are incorporated. The formulated mathematical problem is simplified by implementing suitable similarity transformations. For the numerical solution bvp4c is utilized. The parameters emerging in the model are discussed versus allied profiles through graphical illustrations. It is perceived that the velocity of the fluid decays on incrementing the Bingham number. The gyrotactic microorganism profile declines on amplifying the Peclet number. The validation of the proposed model is also added to this study. .展开更多
By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid densi...By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid density. Results of an example show that the heat transfer anisotropy has an important effect on temperature field.展开更多
Surface temperature changes of building materials affect the calculation of heat flow and thus the energy use in heating and cooling. The surface heat transfer coefficient , limiting the heat flow between material sur...Surface temperature changes of building materials affect the calculation of heat flow and thus the energy use in heating and cooling. The surface heat transfer coefficient , limiting the heat flow between material surface and ambient air is normally taken as a constant. In this study we propose a time-dependent function . We estimate from unidirectional heat flow experiments with transient and steady-state conditions. Using temperature measurements and the conservation of energy at the surface including convective and irradiative boundary conditions, the value of was obtained both using Finite Difference and Taylor Polynomials methods. Numerical solutions of temperature distribution as function of time were improved with the obtained -functions compared to with constant . There were no clear difference between on different materials, and the final values observed were in the order of magnitude expected from the literature.展开更多
Present work investigates the heat transfer and melting behaviour of phase change material(PCM) in six enclosures(enclosure-1 to 6) filled with paraffin wax.Proposed enclosures are equipped with distinct arrangements ...Present work investigates the heat transfer and melting behaviour of phase change material(PCM) in six enclosures(enclosure-1 to 6) filled with paraffin wax.Proposed enclosures are equipped with distinct arrangements of the fins while keeping the fin's surface area equal in each case.Comparative analysis has been presented to recognize the suitable fin arrangements that facilitate improved heat transfer and melting rate of the PCM.Left wall of the enclosure is maintained isothermal for the temperature values 335 K,350 K and 365 K.Dimensionless length of the enclosure including fins is ranging between 0 and 1.Results have been illustrated through the estimation of important performance parameters such as energy absorbing capacity,melting rate,enhancement ratio,and Nusselt number.It has been found that melting time(to melt 100% of the PCM) is 60.5%less in enclosure-2(with two fins of equal length) as compared to the enclosure-1,having no fins.Keeping the fin surface area equal,if the longer fin is placed below the shorter fin(enclosure-3),melting time is further decreased by 14.1% as compared to enclosure-2.However,among all the configurations,enclosure-6 with wire-mesh fin structure exhibits minimum melting time which is 68.4% less as compared to the enclosure-1.Based on the findings,it may be concluded that fins are the main driving agent in the enclosure to transfer the heat from heated wall to the PCM.Proper design and positioning of the fins improve the heat transfer rate followed by melting of the PCM in the entire area of the enclosure.Evolution of the favourable vortices and natural convection current in the enclosure accelerate the melting phenomenon and help to reduce charging time.展开更多
Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretizati...Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data. To consider the thermal effect of phase transformation during cooling, a constitutive equation for describing austenite decomposition kinetics of steel in air and water cooling zones is coupled with the heat transfer model. As the basic required inputs in the numerical simulations, thermal material properties are experimentally measured for three carbon steels and the least squares method is used to statistically derive regression models for the properties, including specific heat and thermal conductivity. The numerical simulation and experimental results show that the setup accuracy of the temperature prediction system of ROT is effectively improved.展开更多
The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can...The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can help dehumidify the wall and indoor air.This paper presents an experimental study of the heat,air,and moisture variations within the envelope wall of a chamber featuring different air interlayer settings under real outdoor air conditions during the summer of 2020 in Shanghai,China.Self-developed humidity-controlling building mate-rials were applied to the inner building envelope.Temperature,humidity,wind velocity,and heat-flow sensors were placed at different positions in the middle of the wall.These parameters were measured and recorded in real-time under three working conditions:humidification,dehumidification,and ventilation.The experimental results show that under the ventilation working conditions,moisture content of 0.52 kg can be removed after a 2-h air layer ventilation,which can benefit the design strategy for the humidification and ventilation of dehu-midification walls.展开更多
Thermal management is essential in our body as it affects various bodily functions,ranging from thermal discomfort to serious organ failures,as an example of the worst-case scenario.There have been extensive studies a...Thermal management is essential in our body as it affects various bodily functions,ranging from thermal discomfort to serious organ failures,as an example of the worst-case scenario.There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body,employing diverse materials and systematic approaches to attaining thermal homeostasis.This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables,particularly emphasizing the strategic methodology to regulate body temperature.There exist several methods to promote personal thermal management in a wearable form.For instance,we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface.Thus,we classify many studies into two branches,passive and active thermal management modes,which are further subdivided into specific strategies.Apart from discussing the strategies and their mechanisms,we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries.展开更多
In order to examine if the heat conduction in porous material behaves like a wave as claimed by other researchers, experiments on transient heat transfer is conducted in casting sand. The results show that the heat pr...In order to examine if the heat conduction in porous material behaves like a wave as claimed by other researchers, experiments on transient heat transfer is conducted in casting sand. The results show that the heat propagation can be described neither by wave nor by diffusion model. The CV-wave concept is discussed and challenged according to the experimental results in the entire transient stage, including the transient response of temperature and the response curve of penetration-depth versus penetration-time.展开更多
Mg-3Ni-2MnO2 nanocomposite is fabricated by mechanical-milling under hydrogen atmosphere with the pressure of 0.5MPa, and heat and mass transfer of reaction bed was measured through the self-made apparatus. The result...Mg-3Ni-2MnO2 nanocomposite is fabricated by mechanical-milling under hydrogen atmosphere with the pressure of 0.5MPa, and heat and mass transfer of reaction bed was measured through the self-made apparatus. The results show that compared with the intrinsic absorption of Mg-3Ni-2MnO2 hydrogen storage material, the accumulated absorption kinetics of the reaction bed behaves so differently. At 150-300℃ during absorption process, the higher the temperature is, the better the intrinsic kinetics behaves. But during the same temperature range, the lower the initial temperature of the reaction bed is, the better the accumulated absorption kinetics is. During the absorption process, the temperature of reaction bed wall is lower than that of center, and the initial temperature has no influence on the highest temperature in the center of the reaction bed . When the reaction is finished, the reaction bed temperature turns to be homogeneous gradually.展开更多
The goal of this work was to measure the heat transfer rates from thermofluid, Therminol 66, to two phase change materials, D-mannitol and adipic acid. It concerns the determination of heat transfer coefficients for t...The goal of this work was to measure the heat transfer rates from thermofluid, Therminol 66, to two phase change materials, D-mannitol and adipic acid. It concerns the determination of heat transfer coefficients for the design of a concentrated solar energy plant requiring PCM thermal energy storage and is part of a wider set of experiments, where several PCMs were tested. An experimental installation was used with a cylindrical vessel with three tubes disposed almost horizontally (5°inclination), containing the phase change material, around which the thermal fluid flowed almost perpendicular to the tubes. The experimental installation allowed to recreate heating and cooling cycles. In order to evaluate the influence of the flow on the rate at which the heating and cooling processes took place, tests were performed at different thermofluid mass flow rates, concluding that there is no great influence, since the thermal resistance inside the tubes is much higher than on the outside. D-mannitol and adipic acid, present different phase change temperatures, 164°C for D-mannitol and 152°C for adipic acid. The average heat transfer coefficient, during the phase change process, was of 340 W/(m<sup>2</sup>K) for D-mannitol and 1320 W/(m<sup>2</sup>K) for adipic acid.展开更多
An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, speci...An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, species of bio-materials, thickness and initialmoisture content of bio-materials on heat transfer were studied in details. The experimental resultsindicate that the penetration and absorption of laser in bio-materials are considerable, the heattransfer inside the bio-materials should include the effects of volumetric absorption, pulseduration, power density, bio-materials thickness, and material species have a significant influenceon the temperature variation.展开更多
文摘The heat transfer equation is used to determine the heat flow by conduction through a composite material along the real axis.An analytical dimensionless analysis is implemented in the framework of a separation of variables method(SVM).This approach leads to an Eigenvalues problem that is solved by the Newton’s method.Two types of dynamics are found:An unsteady condition(in the form of jumps or drops in temperatures depending on the considered case),and a permanent equilibrium(tending to the ambient temperature).The validity and effectiveness of the proposed approach for any number of adjacent layers is also discussed.It is shown that,as expected,the diffusion of the temperature is linked to the ratio of the thermo-physical properties of the considered layers and their number.
文摘This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.
文摘Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoelectric conversion element), because the initial investment is large. The final purpose of this research is development of the low temperature difference drive engine supposing use in a hot-springs resort as a power source for electric power generation. In order that a traveler may look at and delight a motion of an engine, it is made to drive at low-speed number of rotations. An engine cycle of this study is aimed at the development of Stirling cycle engine which can maintain high efficiency in small size. This kind of engine has simple structure;it brings low cost, and it is easy to perform maintenance. However, it is difficult to obtain enough output by this type of engine, because of its low temperature difference. This paper deals with the heat transfer characteristic that the working fluid including a phase change material flows into the heating surface from the narrow path. In order to increase the amount of the heat transmission, Diethylether is added to the working fluid. Diethylether is selected as a phase change material (PCM) that has the boiling point which exists between the heat source of high temperature and low temperature. The parameters of the experiment are additive amount of PCM, rotational speed of the displacer piston and temperature of heat transfer surface. It is shown that it is possible to make exchange of heat amount increase by adding phase change material. The result of this research shows the optimal condition of the difference in temperature in heat processing, number of revolutions, and addition concentration of PCM.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020LLZ004)the National Natural Science Foundation of China (Grant No.52106099),the National Natural Science Foundation of China (Grant No.52076056)the Fundamental Research Funds for the Central Universities (Grant No.AUGA5710094020)。
文摘In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for applications in efficient and ultrafast thermal modulation and energy conversion. Recently, hyperbolic materials, an important class of anisotropic materials with hyperbolic isofrequency contours, have been intensively investigated. As an exotic optical platform, hyperbolic materials bring tremendous new opportunities for NFRHT from theoretical advances to experimental designs. To date, there have been considerable achievements in NFRHT for hyperbolic materials, which range from the establishment of different unprecedented heat transport phenomena to various potential applications. This review concisely introduces the basic physics of NFRHT for hyperbolic materials, lays out the theoretical methods to address NFRHT for hyperbolic materials, and highlights unique behaviors as realized in different hyperbolic materials and the resulting applications. Finally, key challenges and opportunities of the NFRHT for hyperbolic materials in terms of fundamental physics, experimental validations, and potential applications are outlined and discussed.
文摘In the present work,effects of various heat transfer fluids on the discharging performance of a phase change material(PCM) included cylindrical container are numerically assessed during forced convection.The heat transfer fluid air,hydrogen,water and nanofluid with alumina particles are used and the the geometric variation of the PCM embedded region is also considered.The finite element method is used as the solver.Dynamic features of heat exchange with various phases are explored for different heat transfer fluid types,Reynolds number(between 100 and 300) and PCM embedded region geometric variation(h_(x)between 0.01 d_(1) and 0.65 d_(1),hybetween 0.1 h_(1) and 0.4 h_(1)).It is observed that discharging time is significantly influenced by the heat transfer fluid type while full phase transition time for air is obtained as more than 10 times when hydrogen is utilized as heat transfer fluid.The best performance is achieved with nanofluid.When the PCM integrated region size is reduced,discharging time is generally reduced while due to the form of the geometry,vortex formation is established in the PCM region.This results in performance degeneration at the highest radius and height of the inner cylinder.Discharging time increases by about 12% when radius of the inner cylinder is increased from h_(x)=0.35 d_(1) to h_(x)=0.45 d_(1).Dynamic features of PCM temperature and liquid fraction are affected with Reynolds number while discharging time is reduced by about 48% when configurations with the lowest and highest Reynolds number are compared.
文摘A three-dimensional viscous-plastic.finite element model is established based on computational fluid mechanics. The material during the welding process is considered as non-Newtonian fluid abided by Norton-Hoff constitutive law, and viscous dissipation is assumed as the unique heat source. The model is used to numerically simulate the material flow and heat transfer in friction stir welding, and capture some useful process characteristics, .such as heat generation, temperature distribution and fluid.flow; besides, the velocity field is used to calculate streamlines of material flow, and the dimension of the deformation zone is measured.
基金Project supported by Sri Venkateswara college of Engineering,India.
文摘In thermal systems such as solar thermal and waste heat recovery systems, the available energy supply does not usually coincide in time with the process demand. Hence some form of thermal energy storage (TES) is necessary for the most effective utilization of the energy source. This study deals with the experimental evaluation of thermal performance of a packed bed latent heat TES unit integrated with solar flat plate collector. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the solar collector to the storage tank also acts as sensible heat storage material. Charging experiments were carried out at varying inlet fluid temperatures to examine the effects of porosity and HTF flow rate on the storage unit performance. The performance parameters such as instantaneous heat stored, cumulative heat stored, charging rate and system efficiency are studied. Discharging experiments were carried out by both continuous and batchwise processes to recover the stored heat, and the results are presented.
文摘This paper presents results of an experimental investigation carried out to determine the effects of surface material on nucleate pool boiling heat transfer of refrigerant R113. Experiments were performed on horizontal circular plates of brass, copper and aluminum. The heat transfer coefficient was evaluated by measuring wall superheat and effective heat flux removed by boiling. The experiments were carried out in the heat flux range of 8 to 200 kW/m2. The obtained results have shown significant effect of surface material, with copper providing the highest heat transfer coefficient among the samples, and aluminum the least. There was negligible difference at low heat fluxes, but copper showed 23% better performance at high heat fluxes than aluminum and 18% better than brass.
基金Supported by the National Natural Science Foundation of China under Grant No 11304247the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars(No 2015KJXX-40)the Youth Foundation of Xi’an University of Post&Telecommunication under Grant Nos 1011215 and 1010473
文摘We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estimate the device temperature, which is linearly with electrical input power. The simulation results show that there is almost no temperature gradient within the OLED device working under steady state conditions. Furthermore, thermal analysis simulation results show that the surface properties (convective heat transfer coetficient and surface emissivity) of the substrate or cathode can significantly affect the temperature distribution of the OLED.
文摘The objective of this work is to examine how temperature-dependent thermal conductivity and concentration-dependent molecular diffusion affect Reiner-Philippoff nanofluid flow past a nonlinear stretching sheet. At the interface of the elongated surface zero-mass flux and melting heat condition are incorporated. The formulated mathematical problem is simplified by implementing suitable similarity transformations. For the numerical solution bvp4c is utilized. The parameters emerging in the model are discussed versus allied profiles through graphical illustrations. It is perceived that the velocity of the fluid decays on incrementing the Bingham number. The gyrotactic microorganism profile declines on amplifying the Peclet number. The validation of the proposed model is also added to this study. .
文摘By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid density. Results of an example show that the heat transfer anisotropy has an important effect on temperature field.
文摘Surface temperature changes of building materials affect the calculation of heat flow and thus the energy use in heating and cooling. The surface heat transfer coefficient , limiting the heat flow between material surface and ambient air is normally taken as a constant. In this study we propose a time-dependent function . We estimate from unidirectional heat flow experiments with transient and steady-state conditions. Using temperature measurements and the conservation of energy at the surface including convective and irradiative boundary conditions, the value of was obtained both using Finite Difference and Taylor Polynomials methods. Numerical solutions of temperature distribution as function of time were improved with the obtained -functions compared to with constant . There were no clear difference between on different materials, and the final values observed were in the order of magnitude expected from the literature.
文摘Present work investigates the heat transfer and melting behaviour of phase change material(PCM) in six enclosures(enclosure-1 to 6) filled with paraffin wax.Proposed enclosures are equipped with distinct arrangements of the fins while keeping the fin's surface area equal in each case.Comparative analysis has been presented to recognize the suitable fin arrangements that facilitate improved heat transfer and melting rate of the PCM.Left wall of the enclosure is maintained isothermal for the temperature values 335 K,350 K and 365 K.Dimensionless length of the enclosure including fins is ranging between 0 and 1.Results have been illustrated through the estimation of important performance parameters such as energy absorbing capacity,melting rate,enhancement ratio,and Nusselt number.It has been found that melting time(to melt 100% of the PCM) is 60.5%less in enclosure-2(with two fins of equal length) as compared to the enclosure-1,having no fins.Keeping the fin surface area equal,if the longer fin is placed below the shorter fin(enclosure-3),melting time is further decreased by 14.1% as compared to enclosure-2.However,among all the configurations,enclosure-6 with wire-mesh fin structure exhibits minimum melting time which is 68.4% less as compared to the enclosure-1.Based on the findings,it may be concluded that fins are the main driving agent in the enclosure to transfer the heat from heated wall to the PCM.Proper design and positioning of the fins improve the heat transfer rate followed by melting of the PCM in the entire area of the enclosure.Evolution of the favourable vortices and natural convection current in the enclosure accelerate the melting phenomenon and help to reduce charging time.
基金the National Basic Research Program (973) of China (No. 2006CB705400)the National Natural Science Foundation of China (No. 50575200)
文摘Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occtLrring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data. To consider the thermal effect of phase transformation during cooling, a constitutive equation for describing austenite decomposition kinetics of steel in air and water cooling zones is coupled with the heat transfer model. As the basic required inputs in the numerical simulations, thermal material properties are experimentally measured for three carbon steels and the least squares method is used to statistically derive regression models for the properties, including specific heat and thermal conductivity. The numerical simulation and experimental results show that the setup accuracy of the temperature prediction system of ROT is effectively improved.
基金financially supported by the National Natural Science Foundation of China(No.51778358)the Shanghai Municipality Natural Science Foundation(No.21ZR1434400)Sponsored by Key Laboratory of New Technology for Construction of Cities in Mountain Area,Ministry of Education,Chongqing University,Chongqing 400045,China(LNTCCMA-20210103).
文摘The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can help dehumidify the wall and indoor air.This paper presents an experimental study of the heat,air,and moisture variations within the envelope wall of a chamber featuring different air interlayer settings under real outdoor air conditions during the summer of 2020 in Shanghai,China.Self-developed humidity-controlling building mate-rials were applied to the inner building envelope.Temperature,humidity,wind velocity,and heat-flow sensors were placed at different positions in the middle of the wall.These parameters were measured and recorded in real-time under three working conditions:humidification,dehumidification,and ventilation.The experimental results show that under the ventilation working conditions,moisture content of 0.52 kg can be removed after a 2-h air layer ventilation,which can benefit the design strategy for the humidification and ventilation of dehu-midification walls.
基金supported by the National Research Foundation of Korea(NRF)Grant funded through Basic Science Research Program(2021M3H4A1A02050237).
文摘Thermal management is essential in our body as it affects various bodily functions,ranging from thermal discomfort to serious organ failures,as an example of the worst-case scenario.There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body,employing diverse materials and systematic approaches to attaining thermal homeostasis.This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables,particularly emphasizing the strategic methodology to regulate body temperature.There exist several methods to promote personal thermal management in a wearable form.For instance,we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface.Thus,we classify many studies into two branches,passive and active thermal management modes,which are further subdivided into specific strategies.Apart from discussing the strategies and their mechanisms,we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries.
文摘In order to examine if the heat conduction in porous material behaves like a wave as claimed by other researchers, experiments on transient heat transfer is conducted in casting sand. The results show that the heat propagation can be described neither by wave nor by diffusion model. The CV-wave concept is discussed and challenged according to the experimental results in the entire transient stage, including the transient response of temperature and the response curve of penetration-depth versus penetration-time.
文摘Mg-3Ni-2MnO2 nanocomposite is fabricated by mechanical-milling under hydrogen atmosphere with the pressure of 0.5MPa, and heat and mass transfer of reaction bed was measured through the self-made apparatus. The results show that compared with the intrinsic absorption of Mg-3Ni-2MnO2 hydrogen storage material, the accumulated absorption kinetics of the reaction bed behaves so differently. At 150-300℃ during absorption process, the higher the temperature is, the better the intrinsic kinetics behaves. But during the same temperature range, the lower the initial temperature of the reaction bed is, the better the accumulated absorption kinetics is. During the absorption process, the temperature of reaction bed wall is lower than that of center, and the initial temperature has no influence on the highest temperature in the center of the reaction bed . When the reaction is finished, the reaction bed temperature turns to be homogeneous gradually.
文摘The goal of this work was to measure the heat transfer rates from thermofluid, Therminol 66, to two phase change materials, D-mannitol and adipic acid. It concerns the determination of heat transfer coefficients for the design of a concentrated solar energy plant requiring PCM thermal energy storage and is part of a wider set of experiments, where several PCMs were tested. An experimental installation was used with a cylindrical vessel with three tubes disposed almost horizontally (5°inclination), containing the phase change material, around which the thermal fluid flowed almost perpendicular to the tubes. The experimental installation allowed to recreate heating and cooling cycles. In order to evaluate the influence of the flow on the rate at which the heating and cooling processes took place, tests were performed at different thermofluid mass flow rates, concluding that there is no great influence, since the thermal resistance inside the tubes is much higher than on the outside. D-mannitol and adipic acid, present different phase change temperatures, 164°C for D-mannitol and 152°C for adipic acid. The average heat transfer coefficient, during the phase change process, was of 340 W/(m<sup>2</sup>K) for D-mannitol and 1320 W/(m<sup>2</sup>K) for adipic acid.
基金This research was financially supported by the Chinese National Key Foundation Research Subject (No.G2000026305), National Natural Science Foundation of China (No.50276060), and the director foundation of Institute of Engineering Thermophysics, Chinese A
文摘An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, species of bio-materials, thickness and initialmoisture content of bio-materials on heat transfer were studied in details. The experimental resultsindicate that the penetration and absorption of laser in bio-materials are considerable, the heattransfer inside the bio-materials should include the effects of volumetric absorption, pulseduration, power density, bio-materials thickness, and material species have a significant influenceon the temperature variation.