期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Organic heterojunction synaptic device with ultra high recognition rate for neuromorphic computing
1
作者 Xuemeng Hu Jialin Meng +5 位作者 Tianyang Feng Tianyu Wang Hao Zhu Qingqing Sun David Wei Zhang Lin Chen 《Nano Research》 SCIE EI CSCD 2024年第6期5614-5620,共7页
Traditional computing structures are blocked by the von Neumann bottleneck,and neuromorphic computing devices inspired by the human brain which integrate storage and computation have received more and more attention.H... Traditional computing structures are blocked by the von Neumann bottleneck,and neuromorphic computing devices inspired by the human brain which integrate storage and computation have received more and more attention.Here,a flexible organic device with 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene(C8-BTBT)and 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene(C10-DNTT)heterostructural channel having excellent synaptic behaviors was fabricated on muscovite(MICA)substrate,which has a memory window greater than 20 V.This device shows better electrical characteristics than organic field effect transistors with single organic semiconductor channel.Furthermore,the device simulates organism synaptic behaviors successfully,such as paired-pulse facilitation(PPF),long-term potentiation/depression(LTP/LTD)process,and transition from short-term memory(STM)to long-term memory(LTM)by optical and electrical modulations.Importantly,the neuromorphic computing function was verified using the Modified National Institute of Standards and Technology(MNIST)pattern recognition,with a recognition rate nearly 100%without noise.This research proposes a flexible organic heterojunction with the ultra-high recognition rate in MNIST pattern recognition and provides the possibility for future flexible wearable neuromorphic computing devices. 展开更多
关键词 organic heterojunction neuromorphic computing synapse behaviors optical modulation Modified National Institute of Standards and Technology(MNIST)pattern recognition
原文传递
Air-stable ambipolar organic field effect transistors with heterojunction of pentacene and N,N'-bis(4-trifluoromethylben-zyl) perylene-3,4,9,10-tetracarboxylic diimide 被引量:3
2
作者 李建丰 常文利 +1 位作者 欧谷平 张福甲 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期3002-3007,共6页
Fabrication of ambipolar organic field-effect transistors (OFETs) is essential for the achievement of an organic complementary logic circuit. Ambipolar transports in OFETs with heterojunction structures are realized... Fabrication of ambipolar organic field-effect transistors (OFETs) is essential for the achievement of an organic complementary logic circuit. Ambipolar transports in OFETs with heterojunction structures are realized.We select pentacene as a P-type material and N,N'-bis(4-trifluoromethylben-zyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB) as a n-type material in the active layer of the OFETs.The field-effect transistor shows highly air-stable ambipolar characteristics with a field-effect hole mobility of 0.18 cm^2/(V·s) and field-effect electron mobility of 0.031 cm^2/(V·s).Furthermore the mobility only slightly decreases after being exposed to air and remains stable even for exposure to air for more than 60 days.The high electron affinity of PTCDI-TFB and the octadecyltrichlorosilane (OTS) self-assembly monolayer between the SiO2 gate dielectric and the organic active layer result in the observed air-stable characteristics of OFETs with high mobility.The results demonstrate that using the OTS as a modified gate insulator layer and using high electron affinity semiconductor materials are two effective methods to fabricate OFETs with air-stable characteristics and high mobility. 展开更多
关键词 organic heterojunction transistors AMBIPOLAR air-stable high electron affinity
下载PDF
Simulation study of the losses and influences of geminate and bimolecular recombination on the performances of bulk heterojunction organic solar cells 被引量:1
3
作者 朱键卓 祁令辉 +1 位作者 杜会静 柴莺春 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期584-590,共7页
We use the method of device simulation to study the losses and influences of geminate and bimolecular recombinations on the performances and properties of the bulk heterojunction organic solar cells. We find that a fr... We use the method of device simulation to study the losses and influences of geminate and bimolecular recombinations on the performances and properties of the bulk heterojunction organic solar cells. We find that a fraction of electrons(holes)in the device are collected by anode(cathode). The direction of the corresponding current is opposite to the direction of photocurrent. And the current density increases with the bias increasing but decreases as bimolecular recombination(BR)or geminate recombination(GR) intensity increases. The maximum power, short circuit current, and fill factor display a stronger dependence on GR than on BR. While the influences of GR and BR on open circuit voltage are about the same.Our studies shed a new light on the loss mechanism and may provide a new way of improving the efficiency of bulk heterojunction organic solar cells. 展开更多
关键词 bulk heterojunction organic solar cells LOSSES device simulation geminate recombination bi- molecular recombination
下载PDF
Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells
4
作者 刘倩 何志群 +3 位作者 梁春军 赵勇 肖维康 李丹 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第5期103-106,共4页
Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the dop... Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7 × 10^16 cm-3 to 1.2 ×10^16 cm-3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs. 展开更多
关键词 HT Effect of Crystallinity of Fullerene Derivatives on Doping Density in the organic Bulk heterojunction Layer in Polymer Solar Cells DIO
下载PDF
Tandem white organic light-emitting diodes adopting a C_(60) :rubrene charge generation layer 被引量:1
5
作者 毕文涛 吴晓明 +4 位作者 华玉林 孙金娥 肖志慧 王丽 印寿根 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期443-447,共5页
Organic bulk heterojunction fullerence(C60) doped 5, 6, 11, 12-tetraphenylnaphthacene(rubrene) as the high quality charge generation layer(CGL) with high transparency and superior charge generating capability for tand... Organic bulk heterojunction fullerence(C60) doped 5, 6, 11, 12-tetraphenylnaphthacene(rubrene) as the high quality charge generation layer(CGL) with high transparency and superior charge generating capability for tandem organic light emitting diodes(OLEDs) is developed. This CGL shows excellent optical transparency about 90%, which can reduce the optical interference effect formed in tandem OLEDs. There is a stable white light emission including 468 nm and 500 nm peaks from the blue emitting layer and 620 nm peak from the red emitting layer in tandem white OLEDs. A high efficiency of about 17.4 cd/A and CIE coordinates of(0.40, 0.35) at 100 cd/m2 and(0.36, 0.34) at 1000 cd/m2 have been demonstrated by employing the developed CGL, respectively. 展开更多
关键词 tandem white organic light-emitting diodes organic bulk heterojunction charge generation layer current efficiency
下载PDF
Enhanced Emission of Molybdenum Disulfide by Organic−Inorganic Hybrid Heterojunctions
6
作者 Si-Wei Zhang Fulong Ma +6 位作者 Jinhui Jiang Zaiyu Wang Zijie Qiu Jacky W.Y.Lam Guodan Wei Zheng Zhao Ben Zhong Tang 《Precision Chemistry》 2023年第6期357-362,共6页
Due to their excellent stability and layer-dependent photoelectronic properties,transition metal dichalcogenides(TMDs)are one of the most extensively studied two-dimensional semiconductor materials in the postgraphene... Due to their excellent stability and layer-dependent photoelectronic properties,transition metal dichalcogenides(TMDs)are one of the most extensively studied two-dimensional semiconductor materials in the postgraphene era.However,its low luminescence quantum yield limits its application in displays,lighting,and imaging.Here,a 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile(HATCN)layer was grown on the surface of chemical vapor deposition(CVD)-grown monolayer molybdenum disulfide(MoS_(2))by vacuum evaporation,which increased the photoluminescence intensity of MoS_(2)by 15 times.The enhanced luminescence originates from the charge transfer from the conduction band of MoS_(2)to the lowest unoccupied molecular orbital(LUMO)of HATCN,which suppresses the emission of the negatively charged exciton(trion)while increasing the emission of the neutral exciton.Temperature-dependent fluorescence and Raman spectra demonstrate the feasibility of organic−inorganic hybrid heterojunctions for regulating excitons.This facile and practical organic−inorganic hybrid heterojunction can elevate TMD applications,such as light-emitting diodes. 展开更多
关键词 TMDS MoS_(2) CVD PHOTOLUMINESCENCE organic−inorganic hybrid heterojunction
原文传递
Photocatalytic degradation of tetracycline hydrochloride with visible light-responsive bismuth tungstate/conjugated microporous polymer 被引量:1
7
作者 Fenghongkang Pan Yimeng Wang +3 位作者 Kaiqing Zhao Jun Hu Honglai Liu Ying Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期488-496,共9页
Conjugated microporous polymer(CMP)is an emerging organic semiconductor withπ-conjugated skeletons,and the bandgap of CMP can be flexibly modulated to harvest visible light.Based on the diversity and adjustability of... Conjugated microporous polymer(CMP)is an emerging organic semiconductor withπ-conjugated skeletons,and the bandgap of CMP can be flexibly modulated to harvest visible light.Based on the diversity and adjustability of monomers in CMP,we designed and synthesized donor-accepter(D-A)type BTNCMP through Sonogashira-Hagihara cross-coupling polymerization,further in-situ constructing series of inorganic/organic Z-scheme BW/BTN-n composite in the presence of Bi_(2)WO_(6).After optimization,the tetracycline hydrochloride(C0=10 mg·L^(-1))degradation efficiency reached 84%with BW/BTN-2 as catalyst in 90 min under visible light irradiation,the apparent rate constant k1 is 0.017 min^(-1),which is 1.7 and 5.7 times higher than bare Bi_(2)WO_(6) and BTN-CMP.X-ray photoelectron spectra and UV-Vis diffuse spectra showed that the enhanced photocatalytic activity originated from the tight heterojunction between Bi_(2)WO_(6) and BTN-CMP,which can extend the light absorption range and facilitate the separation and transport of photogenerated charges in the interface of heterojunction.The active species trapping experiments and electron spin resonance technique revealed that h+was the dominant active species during the photodegradation process of tetracycline hydrochloride(TCH).The present study demonstrated the feasibility to construct inorganic/organic composite for the photocatalytic degradation of environmental pollutants. 展开更多
关键词 PHOTOCHEMISTRY Degradation Visible light response Pollution Inorganic/organic heterojunction composite
下载PDF
Few-layered organic single-crystalline heterojunctions for high-performance phototransistors 被引量:1
8
作者 Xinzi Tian Jiarong Yao +13 位作者 Lijuan Zhang Bin Han Jianwei Shi Jianwei Su Jie Liu Chunlei Li Xinfeng Liu Tianyou Zhai Lang Jiang Fangxu Yang Xiaotao Zhang Ye Zou Rongjin Li Wenping Hu 《Nano Research》 SCIE EI CSCD 2022年第3期2667-2673,共7页
Photogating and electrical gating are key physical mechanisms in organic phototransistors(OPTs).However,most OPTs are based on thick and polycrystalline films,which leads to substantially low efficiency of both photog... Photogating and electrical gating are key physical mechanisms in organic phototransistors(OPTs).However,most OPTs are based on thick and polycrystalline films,which leads to substantially low efficiency of both photogating and electrical gating and thus reduced photoresponse.Herein,high-performance OPTs based on few-layered organic single-crystalline heterojunctions are proposed and the obstacle of thick and polycrystalline films for photodetection is overcome.Because of the molecular scale thickness of the type I organic single-crystalline heterojunctions in OPTs,both photogating and electrical gating are highly efficient.By synergy of efficient photogating and electrical gating,key figures of merit of OPTs reach the highest among those based on planar heterojunctions so far as we know.The production of few-layered organic single-crystalline heterojunctions will provide a new type of advanced materials for various applications. 展开更多
关键词 two-dimensional(2D)molecular crystals organic single crystals organic heterojunctions organic phototransistors
原文传递
Synthesis and Properties of Polythiophene Benzylidene and Their Photovoltaic Applications
9
作者 Reguig Bendoukha Abdelkarim Ahmed Yahiaoui +2 位作者 Aicha Hachemaoui Mohammed Belbachir Abdelbasset Khelil 《Materials Sciences and Applications》 2011年第8期1014-1021,共8页
Research on organic solar cells has a craze importance because they show very interesting properties including their flexibility and the opportunity to be made into large surfaces. However, their stability and perform... Research on organic solar cells has a craze importance because they show very interesting properties including their flexibility and the opportunity to be made into large surfaces. However, their stability and performance should be significantly improved compared to their current state. A nominal output of around 10% will be the goal for the coming years. The use of organic materials for photovoltaic applications is the subject of intense research in recent years. This work is based in part on the development of new conjugated polymers. In this paper, we present the synthesis and characterization of poly [(thiophene-2,5-diyl)-co-(benzylidene)] PTB catalysed by Maghnite-H+, used in the active layer of the solar cell organic heterojunction with PCBM (derivative of C60) was used as a junction of the solar cell: Glas/ITO/BCP/C60/PTB/Au/Al. A current density of short circuit of about Jcc 0.1mA/cm2 was obtained for this structure with a yield of around 0.15%. 展开更多
关键词 POLYMERIZATION Conjugated Polymers UV-Vis Spectroscopy IR Spectroscopy Yield Calculation Solar Cell organic heterojunction
下载PDF
Influence of donor:acceptor ratio on charge transfer dynamics in non-fullerene organic bulk heterojunctions
10
作者 Zhenchuan Wen Tong Wang +5 位作者 Zhihao Chen Tingting Jiang Lin Feng Xianjin Feng Chaochao Qin Xiaotao Hao 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期529-534,共6页
The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can pr... The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can provide maximized D/A interfacial area for exciton dissociation and appro p riate domain size of the exciton diffusion length,which is beneficial to obtain high-performance OSCs.Here,we comprehensively investigated the relationship between various D:A blend ratios and the charge transfer and energy transfer mechanisms in OSCs based on PBDB-T and non-fullerene acceptor IT-M.Based on various D:A blend ratios,it was found that the ratio of components is a key factor to suppress the formation of triplet states and recombination energy losses.Rational D:A blend ratios can provide appropriate donor/accepter surface for charge transfer which has been powerfully verified by various detailed experimental results from the time-resolved fluorescence measurement and transient absorption(TA) spectroscopy.Optimized coherence length and crystallinity are verified by grazing incident wide-angle X-ray scattering(GIWAXS) measurements.The results are bene ficial to comprehend the effects of various D:A blend ratios on charge transfer and energy transfer dynamics and provides constructive suggestions for rationally designing new materials and feedback for photovoltaic performance optimization in non-fullerene OSCs. 展开更多
关键词 Donor:acceptor ratio Charge transfer dynamics Non-fullerene organic bulk heterojunctions organic solar cells
原文传递
Band alignment and interlayer hybridization in monolayer organic/WSe_(2) heterojunction
11
作者 Yanping Guo Linlu Wu +11 位作者 Jinghao Deng Linwei Zhou Wei Jiang Shuangzan Lu Da Huo Jiamin Ji Yusong Bai Xiaoyu Lin Shunping Zhang Hongxing Xu Wei Ji Chendong Zhang 《Nano Research》 SCIE EI CSCD 2022年第2期1276-1281,共6页
Semiconducting heterojunctions(HJs),comprised of atomically thin transition metal dichalcogenides(TMDs),have shown great potentials in electronic and optoelectronic applications.Organic/TMD hybrid bilayers hold enhanc... Semiconducting heterojunctions(HJs),comprised of atomically thin transition metal dichalcogenides(TMDs),have shown great potentials in electronic and optoelectronic applications.Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons,tunable electronic structures and optical properties,and other superior advantages to these inorganic HJs.Here,we report a direct probe of the interfacial electronic structures of a crystalline monolayer(ML)perylene-3,4,9,10-tetracarboxylic-dianhydride(PTCDA)/ML-WSe_(2) HJ using scanning tunneling microscopy,photoluminescence,and first-principle calculations.Strong PTCDAAA/Se_(2) interfacial interactions lead to appreciable hybridization of the WSe_(2) conduction band with PTCDA unoccupied states,accompanying with a significant amount of PTCDA-to-WSe_(2) charge transfer(by 0.06 e/PTCDA).A type-ll band alignment was directly determined with a valence band offset of-1.69 eV,and an apparent conduction band offset of-1.57 eV.Moreover,we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states. 展开更多
关键词 two-dimensional materials organic/transition metal dichalcogenide(TMD)heterojunction interlayer hybridization band diagram
原文传递
Organic–inorganic Au/PVP/ZnO/Si/Al semiconductor heterojunction characteristics
12
作者 H.Mokhtari M.Benhaliliba 《Journal of Semiconductors》 EI CAS CSCD 2017年第11期104-108,共5页
The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-... The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10^-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted.Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity(n 〉 4). A high rectifying(-4.6 × 10^4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current(SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor. 展开更多
关键词 organic polyvinyl pyrrolidone layer metal-organic-inorganic inorganic ZnO layer heterojunction diode Au contact I–V characteristics
原文传递
碳量子点/四(4-羧基苯基)卟啉/BiOBr S型异质结用于高效光催化降解抗生素 被引量:1
13
作者 王春春 戎珂 +2 位作者 刘艳萍 杨方 李世杰 《Science China Materials》 SCIE EI CAS CSCD 2024年第2期562-572,共11页
太阳能光催化处理制药废水是缓解环境问题和能源危机的一种很有前途的方法.然而,提高其处理效率面临众多挑战,如光吸收效率低、光生载流子快速复合和光氧化还原电位低等.本文通过在BiOBr(BOB)微球上沉积碳量子点(CDs)和四(4-羧基苯基)卟... 太阳能光催化处理制药废水是缓解环境问题和能源危机的一种很有前途的方法.然而,提高其处理效率面临众多挑战,如光吸收效率低、光生载流子快速复合和光氧化还原电位低等.本文通过在BiOBr(BOB)微球上沉积碳量子点(CDs)和四(4-羧基苯基)卟啉(TCPP),巧妙地构建了TCPP/CDs/BOB有机/无机三元S型异质结,用于在可见光下有效降解水体中的盐酸四环素(TC).研究发现,由于两者之间的费米能级差异,在形成异质结时触发了电子从TCPP传递到BOB,从而在界面处构建内部电场(IEF).这极大推动了光诱导载流子的有效分离.此外,CDs作为电子收集器进一步提高了S型异质结的载流子分离能力,因此保留了在CDs中聚集更强还原能力的光电子和在BOB价带中更强氧化能力的空穴来参与光催化反应.在这些催化剂中,TCPP/CDs/BOB-2异质结催化剂在40 min内对TC的降解能力高达83.6%.TCPP/CDs/BOB-2的反应速率常数(k)分别约为BOB、CDs/BOB和TCPP/BOB的2.3、1.8和2.0倍.这项工作为探索用于水净化的有机/无机三元S型光催化剂提供了新的视角. 展开更多
关键词 carbon quantum dots organic/inorganic S-scheme heterojunction tetra(4-carboxyphenyl)porphyrin/BiOBr internal electric field PHOTOCATALYSIS
原文传递
Low-voltage-modulated perovskite/organic dual-band photodetectors for visible and near-infrared imaging
14
作者 Yu Gao Cong Zhao +6 位作者 Kai Pu Miao He Wanqing Cai Man-Chung Tang Feiyu Kang Hin-Lap Yip Guodan Wei 《Science Bulletin》 SCIE EI CAS CSCD 2022年第19期1982-1990,共9页
Visible and near-infrared(NIR)light dual-band photodetectors(PDs)have potential applications in signal detection,bioimaging,optical communications and safety monitoring.Herein,we report an ultrafast perovskite/organic... Visible and near-infrared(NIR)light dual-band photodetectors(PDs)have potential applications in signal detection,bioimaging,optical communications and safety monitoring.Herein,we report an ultrafast perovskite/organic heterojunction dual-mode PD with a voltage-modulated photoresponse range in visible and NIR spectra.The PD,comprising a perovskite layer to absorb visible light(500–810 nm)and an organic bulk heterojunction layer for NIR light absorption(810–950 nm),exhibited a switchable spectral response in the visible or NIR bands.The voltage-modulated visible and NIR photoresponses of the PD were attributable to controlled charge photogeneration in perovskite and organic blend thin films under different bias polarities.The device exhibited peak responsivities of 93.5 and 102.2 mA/W in the visible and NIR bands,respectively;a high detectivity of 4.3×10^(9) Jones(at forward bias of 0.7 V and incident 625 nm light)and 1.6×10^(12) Jones(at reverse bias of–1.5 V and incident 900 nm light);a fast microsecond response time;and a wide dynamic range(>120 dB)both in the visible mode and NIR mode.Also,this voltage-modulated dual-band PD shows promising applications in visible light and NIR imaging,which is proven by demonstrating a PD array with 25 pixels(5×5). 展开更多
关键词 DUAL-BAND PHOTODETECTORS PEROVSKITE organic heterojunction RESPONSIVITY
原文传递
Novel broad spectral response perovskite solar cells:A review of the current status and advanced strategies for breaking the theoretical limit efficiency
15
作者 Bin Liu Yuqi Wang +2 位作者 Yanjie Wu Biao Dong Hongwei Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第9期33-57,共25页
Perovskite solar cells(PSCs)have revolutionized photovoltaic research.The power conversion efficiency(PCE)of PSCs has now reached 25.7%,which is comparable to current state-of-the-art silicon-based cells.However,PSCs ... Perovskite solar cells(PSCs)have revolutionized photovoltaic research.The power conversion efficiency(PCE)of PSCs has now reached 25.7%,which is comparable to current state-of-the-art silicon-based cells.However,PSCs can only utilize light of 300-850 nm,resulting in wasted near-infrared(NIR)light,which occupies 45%-50%of entire solar spectrum,which is one of the main reasons limiting the development of efficiency.Related strategies to broaden NIR spectroscopy to break the theoretical limit efficiency of PSCs have recently attracted extensive attention.This review firstly outlines theoretical basis for improving the NIR spectroscopy,then systematically summarizes some key strategies and research progress to improve NIR spectroscopy of PSCs.We firstly provided a comprehensive overview of historical research experiments on narrow-gap perovskite absorber layers,rare earth up-conversion,tandem devices,and integrated perovskite/organic solar cells and given constructive suggestions for exceeding limit efficiency of PSCs.Finally,based on the development status of PSCs with NIR utilization,the current issues,solutions and future development directions of important aspects to improve NIR utilization of PSCs are systematically discussed.This review lays the foundation for the efficiency of PSCs beyond the Shockley-Queisser limit,and provides a certain development prospect. 展开更多
关键词 organic materials Up-conversion materials Perovskite solar cells Tandem cells Integrated perovskite/organic heterojunction solar cells
原文传递
Conjugated Polymers as Hole Transporting Materials for Solar Cells 被引量:2
16
作者 Dan Ti Kun Gao +1 位作者 Zhi-Pan Zhang Liang-Ti Qu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第5期449-458,I0005,共11页
In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost sol... In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage,hole transporting materials(HTMs)based on conjugated polymers have received increasing attention in the past decade.In this perspective,recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs),perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs)are summarized and perspectives on their future development are also presented. 展开更多
关键词 Conjugated polymers Hole transporting materials Dye-sensitized solar cells Perovskite solar cells Silicon/organic heterojunction solar cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部