The development of efficient hydrogen storage materials is one of the biggest technical challenges for the coming "hydrogen economy". The liquid organic hydrogen carriers (LOHCs) with high hydrogen contents, rever...The development of efficient hydrogen storage materials is one of the biggest technical challenges for the coming "hydrogen economy". The liquid organic hydrogen carriers (LOHCs) with high hydrogen contents, reversibilities and moderate dehydrogenation kinetics have been considered as an alternative option supplementing the extensively investigated inorganic hydride systems. In this review, LOHCs for long distance H2 transport and for onboard application will be discussed with the focuses of the design and development of LOHCs and their hydrogenation & dehydrogenation catalyses.展开更多
Hydrogen has attracted widespread attention as a carbon-neutral energy source,but developing efficient and safe hydrogen storage technologies remains a huge challenge.Recently,liquid organic hydrogen carriers(LOHCs)te...Hydrogen has attracted widespread attention as a carbon-neutral energy source,but developing efficient and safe hydrogen storage technologies remains a huge challenge.Recently,liquid organic hydrogen carriers(LOHCs)technology has shown great potential for efficient and stable hydrogen storage and transport.This technology allows for safe and economical large-scale transoceanic transportation and long-cycle hydrogen storage.In particular,traditional organic hydrogen storage liquids are derived from nonrenewable fossil fuels through costly refining procedures,resulting in unavoidable environmental contamination.Biomass holds great promise for the preparation of LOHCs due to its unique carbon-balance properties and feasibility to manufacture aromatic and nitrogen-doped compounds.According to recent studies,almost 100%conversion and 92% yield of benzene could be obtained through advanced biomass conversion technologies,showing great potential in preparing biomass-based LOHCs.Overall,the present LOHCs systems and their unique applications are introduced in this review,and the technical paths are summarized.Furthermore,this paper provides an outlook on the future development of LOHCs technology,focusing on biomass-derived aromatic and N-doped compounds and their applications in hydrogen storage.展开更多
N-Ethylcarbazole(NEC)is one of the most promising liquid organic hydrogen carriers(LOHCs),but its application is limited by sluggish kinetics due to lack of high-efficiency,low-cost catalysts.This work reports a cobal...N-Ethylcarbazole(NEC)is one of the most promising liquid organic hydrogen carriers(LOHCs),but its application is limited by sluggish kinetics due to lack of high-efficiency,low-cost catalysts.This work reports a cobalt(Co)-based catalyst promoted by nonstoichiometric yttrium hydride(YH_(3−x))to achieve high-efficiency,reversible hydrogen storage in NEC,with>5.5 wt%reversible hydrogen storage capacity could be achieved below 473 K,and with good kinetics.The YH_(3−x)-promoted Co-based catalyst is the first non-noble metal catalyst with high activity for NEC hydrogenation and 12H-NEC dehydrogenation reactions.A mechanistic study suggests that YH_(3−x)facilitates the reversible hydrogen transfer both in the hydrogenation and the dehydrogenation reactions.The nonstoichiometric YH_(3−x)contained both lattice H and H vacancies with tunable H chemical potential serve as the H donor and H acceptor for reversible hydrogen transfer.Our results support the practical application of LOHCs and inspire new approaches for the utilization of conventional metal hydrides to promote versatile H transfer reactions.展开更多
Hydrogenation of N-ethylcarbazole(NEC),the hydrogen lean form of a liquid organic hydrogen carrier,on TiO2 supported Ru-Ni bimetallic catalysts is investigated.Crystal structure of TiO2 plays a critical role on the hy...Hydrogenation of N-ethylcarbazole(NEC),the hydrogen lean form of a liquid organic hydrogen carrier,on TiO2 supported Ru-Ni bimetallic catalysts is investigated.Crystal structure of TiO2 plays a critical role on the hydrogenation activity and selectivity towards fully hydrogenated product.Ru/anatase catalyst exhibits higher selectivity but lower reactivity compared to Ru/rutile catalyst.Ni addition significantly promotes the performance of Ru/anatase catalyst while causes severe performance deterioration of Ru/rutile catalyst.Commercial P25,a mixture of anatase and rutile phases in approximate ratio A/R1/4,is found to be the best TiO2 support for NEC hydrogenation.Ru/P25 catalyst outperforms both Ru/rutile and Ru/anatase and its activity can be further slightly improved by Ni addition.The unexpected synergism between the two different TiO2 phases for Ru based NEC hydrogenation catalysts is related to metal-support interaction and Ru-Ni interaction.展开更多
Exploiting inexpensive and effective nickel-based catalysts that produce hydrogen from liquid organic hydrogen carriers(LOHCs)is crucial to alleviating the global energy and environmental crisis.In this study,we repor...Exploiting inexpensive and effective nickel-based catalysts that produce hydrogen from liquid organic hydrogen carriers(LOHCs)is crucial to alleviating the global energy and environmental crisis.In this study,we report a rational strategy that can realize atomically dispersed Ni atoms anchored on vacancy-abundant boron nitride nanosheets(Ni1/h-BNNS)with high specific surface area(up to 622 m^(2)·g^(-1))and abundant hydroxyl groups for high efficient hydrogen production.Methanol dehydrogenation results show an excellent hydrogen production performance catalyzed by this Ni1/h-BNNS,as evidenced by a remarkably high H_(2) yield rate(1684.23 mol·mol_(Ni)^(-1)·h^(-1)),nearly 100%selectivity toward hydrogen and CO,and high anti-coking performance.Density functional theory(DFT)calculations reveal that the outstanding catalytic performance of Ni1/h-BNNS primarily originates from the unique coordinated environment of atomically dispersed Ni(Ni-B_(2)O_(2))and the synergistic interaction between Ni single atoms and the h-BNNS support.Specifically,the coordinated O atoms play a decisive role in promoting the activity of Ni,and the neighboring B sites significantly decrease the energy barriers for the adsorption of key intermediates of methanol dehydrogenation.This study offers a novel strategy for developing high-performance and stable single-atom Ni catalysts by precisely controlling single-atom sites on h-BN support for sustainable hydrogen production.展开更多
基金supported by the Project of the National Natural Science Funds for Distinguished Young Scholar(51225206)Projects of the National Natural Science Foundation of China(grant nos.U1232120,51301161,21473181 and 51472237)
文摘The development of efficient hydrogen storage materials is one of the biggest technical challenges for the coming "hydrogen economy". The liquid organic hydrogen carriers (LOHCs) with high hydrogen contents, reversibilities and moderate dehydrogenation kinetics have been considered as an alternative option supplementing the extensively investigated inorganic hydride systems. In this review, LOHCs for long distance H2 transport and for onboard application will be discussed with the focuses of the design and development of LOHCs and their hydrogenation & dehydrogenation catalyses.
基金supported by the National Natural Science Fund for Excellent Young Scholars(China)(Grant No.51822604).
文摘Hydrogen has attracted widespread attention as a carbon-neutral energy source,but developing efficient and safe hydrogen storage technologies remains a huge challenge.Recently,liquid organic hydrogen carriers(LOHCs)technology has shown great potential for efficient and stable hydrogen storage and transport.This technology allows for safe and economical large-scale transoceanic transportation and long-cycle hydrogen storage.In particular,traditional organic hydrogen storage liquids are derived from nonrenewable fossil fuels through costly refining procedures,resulting in unavoidable environmental contamination.Biomass holds great promise for the preparation of LOHCs due to its unique carbon-balance properties and feasibility to manufacture aromatic and nitrogen-doped compounds.According to recent studies,almost 100%conversion and 92% yield of benzene could be obtained through advanced biomass conversion technologies,showing great potential in preparing biomass-based LOHCs.Overall,the present LOHCs systems and their unique applications are introduced in this review,and the technical paths are summarized.Furthermore,this paper provides an outlook on the future development of LOHCs technology,focusing on biomass-derived aromatic and N-doped compounds and their applications in hydrogen storage.
基金This research was made possible as a result of a generous grant from MOST of China(no.2018YFB1502102)NSFC(nos.21771006,51771002,and 51971004).
文摘N-Ethylcarbazole(NEC)is one of the most promising liquid organic hydrogen carriers(LOHCs),but its application is limited by sluggish kinetics due to lack of high-efficiency,low-cost catalysts.This work reports a cobalt(Co)-based catalyst promoted by nonstoichiometric yttrium hydride(YH_(3−x))to achieve high-efficiency,reversible hydrogen storage in NEC,with>5.5 wt%reversible hydrogen storage capacity could be achieved below 473 K,and with good kinetics.The YH_(3−x)-promoted Co-based catalyst is the first non-noble metal catalyst with high activity for NEC hydrogenation and 12H-NEC dehydrogenation reactions.A mechanistic study suggests that YH_(3−x)facilitates the reversible hydrogen transfer both in the hydrogenation and the dehydrogenation reactions.The nonstoichiometric YH_(3−x)contained both lattice H and H vacancies with tunable H chemical potential serve as the H donor and H acceptor for reversible hydrogen transfer.Our results support the practical application of LOHCs and inspire new approaches for the utilization of conventional metal hydrides to promote versatile H transfer reactions.
基金NSFC (Nos. 21771006, U1607126 and 51771002)MOST of China (No. 2017YFB0405902)Beijing Municipal Commission of Science and Technology (Z17110000091702)
文摘Hydrogenation of N-ethylcarbazole(NEC),the hydrogen lean form of a liquid organic hydrogen carrier,on TiO2 supported Ru-Ni bimetallic catalysts is investigated.Crystal structure of TiO2 plays a critical role on the hydrogenation activity and selectivity towards fully hydrogenated product.Ru/anatase catalyst exhibits higher selectivity but lower reactivity compared to Ru/rutile catalyst.Ni addition significantly promotes the performance of Ru/anatase catalyst while causes severe performance deterioration of Ru/rutile catalyst.Commercial P25,a mixture of anatase and rutile phases in approximate ratio A/R1/4,is found to be the best TiO2 support for NEC hydrogenation.Ru/P25 catalyst outperforms both Ru/rutile and Ru/anatase and its activity can be further slightly improved by Ni addition.The unexpected synergism between the two different TiO2 phases for Ru based NEC hydrogenation catalysts is related to metal-support interaction and Ru-Ni interaction.
基金This work was funded by the Shandong Province Major Scientific and Technological Innovation Project(No.2021CXGC010803)the National Natural Science Foundation of China(No.21876188)+1 种基金M.Y.acknowledges National Research Foundation Competitive Research Programs(No.NRFCRP24-2020-0002)M.Y.acknowledges the funding support(project ID:1-BE47,ZE0C,ZE2F,and ZE2X)from the Hong Kong Polytechnic University.We acknowledge the Centre for Advanced 2D Materials and Graphene Research at the National University of Singapore and the National Supercomputing Centre Singapore for providing computing resources.
文摘Exploiting inexpensive and effective nickel-based catalysts that produce hydrogen from liquid organic hydrogen carriers(LOHCs)is crucial to alleviating the global energy and environmental crisis.In this study,we report a rational strategy that can realize atomically dispersed Ni atoms anchored on vacancy-abundant boron nitride nanosheets(Ni1/h-BNNS)with high specific surface area(up to 622 m^(2)·g^(-1))and abundant hydroxyl groups for high efficient hydrogen production.Methanol dehydrogenation results show an excellent hydrogen production performance catalyzed by this Ni1/h-BNNS,as evidenced by a remarkably high H_(2) yield rate(1684.23 mol·mol_(Ni)^(-1)·h^(-1)),nearly 100%selectivity toward hydrogen and CO,and high anti-coking performance.Density functional theory(DFT)calculations reveal that the outstanding catalytic performance of Ni1/h-BNNS primarily originates from the unique coordinated environment of atomically dispersed Ni(Ni-B_(2)O_(2))and the synergistic interaction between Ni single atoms and the h-BNNS support.Specifically,the coordinated O atoms play a decisive role in promoting the activity of Ni,and the neighboring B sites significantly decrease the energy barriers for the adsorption of key intermediates of methanol dehydrogenation.This study offers a novel strategy for developing high-performance and stable single-atom Ni catalysts by precisely controlling single-atom sites on h-BN support for sustainable hydrogen production.