期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors 被引量:1
1
作者 Xiaomei Wu Xiaoxing Ke Manling Sui 《Journal of Semiconductors》 EI CAS CSCD 2022年第4期67-81,共15页
Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property rel... Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material. 展开更多
关键词 organicinorganic hybrid perovskite solar cell materials energy materials scanning electron microscopy transmission electron microscopy irradiation damage
下载PDF
The effect of modified layers on the performance of inverted ZnO nanorods/MEH-PPV solar cells 被引量:2
2
作者 YAN Yue ZHAO SuLing +2 位作者 XU Zheng WEI Gong WANG LiHui 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第3期453-458,共6页
We fabricate inverted organic/inorganic hybrid solar cells based on vertically oriented ZnO nanorods and polymer MEH-PPV. The morphology of ZnO nanorods and ZnO nanorods/MEH-PPV hybrid structure is depicted by using s... We fabricate inverted organic/inorganic hybrid solar cells based on vertically oriented ZnO nanorods and polymer MEH-PPV. The morphology of ZnO nanorods and ZnO nanorods/MEH-PPV hybrid structure is depicted by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscope (AFM), respectively. It is observed that ZnO nanorods array grows primarily aligned along the perpendicular direction of the ITO substrate. The MEH-PPV molecule does not enter the interspace between ZnO nanorods completely according to SEM picture. It results in the small and bad contact area between ZnO nanorods and MEH-PPV. To improve the photovoltaic performance, we also fabricate another kind of photovoltaic (PV) device modified by N719 dye, and exploit the effect of N719. After the modification of ZnO nanorods by N719, not only Jsc increases from 0.257 mA/cm2 to 0.42 mA/cm2, but also Voc enhances from 0.37 V to 0.42 V. Insert LiF buffer layer between MEH-PPV and anode, Jsc of 1.05 mA/cm2 is obtained, and it is 2.5 times that the device without LiF. 展开更多
关键词 ZnO nanorods inorganic/organic hybrid solar cell N719 dye LiF
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部