The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By vi...The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.展开更多
To solve the fire accidents caused by coal combustion,this work prepared four hybrid hydrogel materials using bio-based polymers,flame retardants,and inorganic materials.Compared to pure water and 3.5 wt%MgCl_(2)solut...To solve the fire accidents caused by coal combustion,this work prepared four hybrid hydrogel materials using bio-based polymers,flame retardants,and inorganic materials.Compared to pure water and 3.5 wt%MgCl_(2)solution,the as-prepared hydrogel presents good fire prevention performance.In addition,it is found that CO and CO_(2)are not produced by coal when the pyrolysis temperature is lower than 200℃.During low-temperature pyrolysis,CO is more likely to be produced than CO_(2),indicating inadequate pyrolysis behavior.At the same time,the addition of fire-preventing hydrogel can not only decrease the maximum CO_(2)concentration before the critical temperature but also prolong the corresponding time.In addition,based on the cone calorimeter test,the inhibition effects of pure water,magnesium chloride solution,and four hybrid hydrogels on heat release behavior are evaluated.It is demonstrated that different dosages of different hydrogels affected the fire prevention effect.Phosphorous-modified cellulose/silica and carrageenan/DMMP/vermiculite composite hydrogels have the weakest fire prevention effect at 20 g,which is weaker than that of water.However,the fire prevention effect of carrageenan/DMMP/vermiculite composite hydrogels exceeded that of water at 40 and 60 g.Additionally,the fire prevention effect of the sodium alginate/sepiolite/ammonium polyphosphate composite hydrogel is most significant in common tests,attributed to the intumescent flame retardant system.展开更多
Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPh...Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.展开更多
A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethox...A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethoxysilane(A-TES) and benzyltetrazole-modified triethoxysilane(BT-TES).The dual-curing approach including UV-curing and thermal curing was used to obtain the crosslinked membranes.Polyethylene glycol(400) diacrylate(PEGDA) was used as an oligomer to form the polymeric matrix.The molecular structures of precursors were characterized by 1 H,13 C and 29 Si NMR spectra.The thermogravimetric analysis(TGA) results show that the membranes exhibit acceptable thermal stability for their application at above 200 oC.The differential scanning calorimeter(DSC) determination indicates that the crosslinked membranes with the mass ratios of below 1.6 of BT-TES to A-TES and the same mass of H3PO4 doped as that of A-TES possess the-T g s,and the lowest T g(-28.9 ℃) exists for the membrane with double mass of H3PO4 doped as well.The high proton conductivity in a range of 9.4―17.3 mS/cm with the corresponding water uptake of 19.1%―32.8% of the membranes was detected at 90 oC under wet conditions.Meanwhile,the proton conductivity in a dry environment for the membrane with a mass ratio of 2.4 of BT-TES to A-TES and double H3PO4 loading increases from 4.89×10-2 mS/cm at 30 ℃ to 25.7 mS/cm at 140 ℃.The excellent proton transport ability under both hydrous and anhydrous conditions demonstrates a potential application in the polymer electrolyte membrane fuel cells.展开更多
Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hyb...Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hybrid perovskite methylammonium lead bromide(MAPbBr_(3))nanocrystals stabilized in aqueous HBr solution can achieve simultaneous aromatic bromination and hydrogen evolution using HBr as the bromine source under visible light irradiation.By hybridizing MAPbBr_(3) with Pt/Ta_(2)O_(5) and poly(3,4‐ethylenedioxythiophene)polystyrene sulfonate as electron‐and hole‐transporting motifs,aromatic bromides were achieved from aromatic compounds with high yield(up to 99%)and selectivity(up to 99%)with the addition of N,N‐dimethylformamide or its analogs.The mechanistic studies revealed that the bromination proceeds via an electrophilic attack pathway and that HOBr may be the key intermediate in the bromination reaction.展开更多
Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the indi...Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.展开更多
We present a study of magnetocaloric effect of the quasi-two-dimensional(2D) ferromagnet(CH_3NH_3)_2CuCl_4 in ab plane(easy-plane). From the measurements of magnetic field dependence of magnetization at various ...We present a study of magnetocaloric effect of the quasi-two-dimensional(2D) ferromagnet(CH_3NH_3)_2CuCl_4 in ab plane(easy-plane). From the measurements of magnetic field dependence of magnetization at various temperatures,we have discovered a large magnetic entropy change associated with the ferromagnetic–paramagnetic transition. The heat capacity measurements reveal an abnormal adiabatic change below the Curie temperature T_c^8.9 K, which is caused by the nature of quasi-2D layered crystal structure. These results suggest that perovskite organic–inorganic hybrids with a layered structure are suitable candidates as working substances in magnetic refrigeration technology.展开更多
hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) mat...hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, 1H-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and 11.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33 values) are 2.91×10 8esu and 6.14×10 8esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after 10h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.展开更多
A new iodoplumbate/organic hybrid,[(Et_2DABCO)_2(Pb_3I_(11))(H3 O)]n(1,Et_2DABCO = N,N?-diethyl-1,4-diazabicyclo[2.2.2] octane) has been synthesized using solution method.According to X-ray diffraction stru...A new iodoplumbate/organic hybrid,[(Et_2DABCO)_2(Pb_3I_(11))(H3 O)]n(1,Et_2DABCO = N,N?-diethyl-1,4-diazabicyclo[2.2.2] octane) has been synthesized using solution method.According to X-ray diffraction structural analysis,the unique(Pb_3I_(11))_n^(5n-) chain in 1 is constructed from face-and edge-sharing PbI_6 octahedra,which is templated by(Et_2DABCO)^(2+) dication possessing both rigidity and flexibility.C-H...I hydrogen bonds contribute to the structure extending from 1D chains to a 3D network.Its energy band gap of 2.64 eV indicates its broad-gap semiconductor nature.It exhibits both photocurrent response property and photocatalytic activity for the degradation of rhodamine B.展开更多
Electroreduction of CO_(2) into value-added chemicals and fuels utilizing renewable electricity offers a sustainable way to meet the carbon-neutral goal and a viable solution for the storage of intermittent green ener...Electroreduction of CO_(2) into value-added chemicals and fuels utilizing renewable electricity offers a sustainable way to meet the carbon-neutral goal and a viable solution for the storage of intermittent green energy sources.At the core of this technology is the development of electrocatalysts to accelerate the redox kinetics of CO_(2) reduction reactions(CO_(2)RR)toward high targeted-product yield at minimal energy input.This perspective focuses on a unique category of CO_(2)RR electrocatalysts embodying both inorganic and organic components to synergistically promote the reaction activity,selectivity and stability.First,we summarize recent progress on the design and fabrication of organic/inorganic hybrids CO_(2)RR electrocatalysts,with special attention to the assembly protocols and structural configurations.We then carry out a comprehensive discussion on the mechanistic understanding of CO_(2)RR processes tackled jointly by the inorganic and organic phases,with respect to the regulation of mass and charge transport,modification of double-layer configuration,tailoring of intermediates adsorption,and establishment of tandem pathways.At the end,we outline future challenges in the rational design of organic/inorganic hybrids for CO_(2)RR and further extend the scope to the device level.We hope this work could incentivize more research interests to construct organic/inorganic hybrids for mobilizing electrocatalytic CO_(2)RR towards industrialization.展开更多
Due to their excellent stability and layer-dependent photoelectronic properties,transition metal dichalcogenides(TMDs)are one of the most extensively studied two-dimensional semiconductor materials in the postgraphene...Due to their excellent stability and layer-dependent photoelectronic properties,transition metal dichalcogenides(TMDs)are one of the most extensively studied two-dimensional semiconductor materials in the postgraphene era.However,its low luminescence quantum yield limits its application in displays,lighting,and imaging.Here,a 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile(HATCN)layer was grown on the surface of chemical vapor deposition(CVD)-grown monolayer molybdenum disulfide(MoS_(2))by vacuum evaporation,which increased the photoluminescence intensity of MoS_(2)by 15 times.The enhanced luminescence originates from the charge transfer from the conduction band of MoS_(2)to the lowest unoccupied molecular orbital(LUMO)of HATCN,which suppresses the emission of the negatively charged exciton(trion)while increasing the emission of the neutral exciton.Temperature-dependent fluorescence and Raman spectra demonstrate the feasibility of organic−inorganic hybrid heterojunctions for regulating excitons.This facile and practical organic−inorganic hybrid heterojunction can elevate TMD applications,such as light-emitting diodes.展开更多
Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/ino...Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.展开更多
The immobilized nickel(II) on the organic-inorganic hybrid material was prepared and used as an effective catalyst for the Biginelli reaction.In the presence of the immobilized nickel catalyst,aromatic aldehydes react...The immobilized nickel(II) on the organic-inorganic hybrid material was prepared and used as an effective catalyst for the Biginelli reaction.In the presence of the immobilized nickel catalyst,aromatic aldehydes reacted with ethyl acetoacetate and urea (or thiourea) smoothly to generate the corresponding Biginelli products in good to excellent yields without using any additive.The work-up procedure is very simple and practical.Furthermore,the silica-supported nickel(II) could be recovered and recycled for six consecutive trials without significant loss of its catalytic activity.展开更多
Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property rel...Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.展开更多
A kind of inorganic organic hybrid 18 molybdodiphosphate nanoparticles ([(C 4H 9) 4N] 6P 2Mo 18 O 62 ·4H 2O) was firstly used as a bulk modifier to fabricate a three dimensional chemically modi...A kind of inorganic organic hybrid 18 molybdodiphosphate nanoparticles ([(C 4H 9) 4N] 6P 2Mo 18 O 62 ·4H 2O) was firstly used as a bulk modifier to fabricate a three dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square wave voltammetry. The hybrid 18 molybdodiphosphate nanoparticles bulk modified CPE (MNP CPE) displayed a high electrocatalytic activity towards the reduction of nitrite, bromate and hydrogen peroxide. The remarkable advantages of the MNP CPE over the traditional polyoxometalates modified electrodes are their excellent reproducibility of surface renewal and high stability owing to the insolubility of the hybrid 18 molybdodiphosphate nanoparticles.展开更多
A novel inorganic organic hybrid material, Fe 2O(OH)(C 5H 4 ~NCOO)SO 4 was synthesized via solvothermal route using a reaction of FeCl 3·6H 2O, KCNS, and 4 cyanopyridine in aqueous solution of H 2O 2...A novel inorganic organic hybrid material, Fe 2O(OH)(C 5H 4 ~NCOO)SO 4 was synthesized via solvothermal route using a reaction of FeCl 3·6H 2O, KCNS, and 4 cyanopyridine in aqueous solution of H 2O 2 and ethanol at 130 ℃ for 3 d. The compound crystallized in monoclinic space group P 2 1, with cell parameters a =0 73850(15) nm, b =0 65100(13) nm, c =1 0546(2) nm, β =90 36(3)°, V =0 50700(18) nm 3 and Z =2. The structure is constructed with inorganic layered [Fe 2O(OH)SO 4] + cations linked by organic (C 5H 4NCOO) - anions. The compound is thermally stable up to approximately 240 ℃.展开更多
Organic/inorganic material has attracted great attentions because its importance as photonic materials. We report on our recent results on organic/inorganic hybrid sol-gel materials and optical waveguides like splitte...Organic/inorganic material has attracted great attentions because its importance as photonic materials. We report on our recent results on organic/inorganic hybrid sol-gel materials and optical waveguides like splitter, thermo-optic switch and micro-cavity laser.展开更多
The current study investigated the effects of novel hybrid polyacrylamide polymers as ash (slime) depressants in fine coal flotation to enhance combustible recovery and ash rejection. Coal samples at P<sub>80<...The current study investigated the effects of novel hybrid polyacrylamide polymers as ash (slime) depressants in fine coal flotation to enhance combustible recovery and ash rejection. Coal samples at P<sub>80</sub> of approximately 45 um with ~25% ash content were floated in the presence of in-house synthesized hybrid aluminum hydroxide polyacrylamide polymers (Al(OH)<sub>3</sub>-PAM, or Al-PAM). All flotation experiments were carried out in a 5-L Denver flotation cell. Various influencing factors were examined to optimize the flotation process in the presence of the Al-PAM polymers, including the Al-PAM dosage, Al-PAM conditioning time, impeller rotation speed and pulp pH. Comparative and synergistic studies were also performed using organic polyacrylamide polymers (PAMs), commercial dispersants and Al-PAM/dispersant system. Results showed a significant improvement in both combustible recovery and ash rejection at an Al-PAM dosage of 0.25 mg/L. The maximum combustible recovery obtained, at natural pH, with Al-PAM and Al-PAM/dispersant system was determined to be 70% and 66% at ash content of 7.74% and 7.4%, respectively. Zeta potential values of both the raw coal and concentrate products showed a large shift toward more positive values (from ˉ50 mV to ˉ13 mV), indicating a significant decrease in ash-forming minerals (slimes) when Al-PAM polymers were applied.展开更多
We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, ...We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, and CdS nanoparticles as photosensitizers to manifest photorefractive (PR) effect. The unpoled PVNPAK film exhibits a second harmonic generation (SHG) coefficient of 4.7 pm/V due to the possibility of self-alignment of the azo chromophore. Significant enhancement of photoconductivity is noticed with the increase of CdS nanoparticles concentration. The photorefractive property of the polymer nanocomposites were determined by two-beam coupling (TBC) experiment. The TBC gain and diffraction efficiency of 11.89 cm-1 and 3.2% were obtained for PVNPAK/CdS at zero electrical field.展开更多
The on-surface self-assembly of inorganic atomic clusters and organic molecules offers significant opportunities to design novel hybrid materials with tailored functionalities.By adopting the advantages from both inor...The on-surface self-assembly of inorganic atomic clusters and organic molecules offers significant opportunities to design novel hybrid materials with tailored functionalities.By adopting the advantages from both inorganic and organic components,the hybrid self-assembly molecules have shown great potential in future optoelectrical devices.Herein,we report the co-deposition of 4,8-diethynylbenzo[1,2-d-4,5-d0]bisoxazole(DEBBA)and Se atoms to produce a motif-adjustable organic–inorganic hybrid self-assembly system via the non-covalent interactions.By controlling the coverage of Se atoms,various chiral molecular networks containing Se,Se_(6),Se_(8),and terminal alkynes evolved on the Ag(111)surface.In particular,with the highest coverage of Se atoms,phase segregation into alternating one-dimensional chains of non-covalently bonded Se_(8) clusters and organic ligands has been noticed.The atom-coverage dependent evolution of self-assembly structures reflects the remarkable structural adaptability of Se clusters as building blocks based on the spontaneous resize to reach the maximum non-covalent interactions.This work has significantly extended the possibilities of flexible control in self-assembly nanostructures to enable more potential functions for broad applications.展开更多
基金This work was supported by the National Natural Science Foundation of China(U1904216 and U22A20141)the Natural Science Foundation of Changsha City(kq2208258).
文摘The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.
基金the National Key Research and Development Program of China(Grant No.2017YFC0805900)the Fundamental Research Funds for the Central Universities(Grant No.WK2320000047)the USTC Research Funds of the Double First-Class Initiative(Grant No.YD2320002004).
文摘To solve the fire accidents caused by coal combustion,this work prepared four hybrid hydrogel materials using bio-based polymers,flame retardants,and inorganic materials.Compared to pure water and 3.5 wt%MgCl_(2)solution,the as-prepared hydrogel presents good fire prevention performance.In addition,it is found that CO and CO_(2)are not produced by coal when the pyrolysis temperature is lower than 200℃.During low-temperature pyrolysis,CO is more likely to be produced than CO_(2),indicating inadequate pyrolysis behavior.At the same time,the addition of fire-preventing hydrogel can not only decrease the maximum CO_(2)concentration before the critical temperature but also prolong the corresponding time.In addition,based on the cone calorimeter test,the inhibition effects of pure water,magnesium chloride solution,and four hybrid hydrogels on heat release behavior are evaluated.It is demonstrated that different dosages of different hydrogels affected the fire prevention effect.Phosphorous-modified cellulose/silica and carrageenan/DMMP/vermiculite composite hydrogels have the weakest fire prevention effect at 20 g,which is weaker than that of water.However,the fire prevention effect of carrageenan/DMMP/vermiculite composite hydrogels exceeded that of water at 40 and 60 g.Additionally,the fire prevention effect of the sodium alginate/sepiolite/ammonium polyphosphate composite hydrogel is most significant in common tests,attributed to the intumescent flame retardant system.
文摘Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.
基金Supported by the National Natural Science Foundation of China(No.50973100)
文摘A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethoxysilane(A-TES) and benzyltetrazole-modified triethoxysilane(BT-TES).The dual-curing approach including UV-curing and thermal curing was used to obtain the crosslinked membranes.Polyethylene glycol(400) diacrylate(PEGDA) was used as an oligomer to form the polymeric matrix.The molecular structures of precursors were characterized by 1 H,13 C and 29 Si NMR spectra.The thermogravimetric analysis(TGA) results show that the membranes exhibit acceptable thermal stability for their application at above 200 oC.The differential scanning calorimeter(DSC) determination indicates that the crosslinked membranes with the mass ratios of below 1.6 of BT-TES to A-TES and the same mass of H3PO4 doped as that of A-TES possess the-T g s,and the lowest T g(-28.9 ℃) exists for the membrane with double mass of H3PO4 doped as well.The high proton conductivity in a range of 9.4―17.3 mS/cm with the corresponding water uptake of 19.1%―32.8% of the membranes was detected at 90 oC under wet conditions.Meanwhile,the proton conductivity in a dry environment for the membrane with a mass ratio of 2.4 of BT-TES to A-TES and double H3PO4 loading increases from 4.89×10-2 mS/cm at 30 ℃ to 25.7 mS/cm at 140 ℃.The excellent proton transport ability under both hydrous and anhydrous conditions demonstrates a potential application in the polymer electrolyte membrane fuel cells.
文摘Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hybrid perovskite methylammonium lead bromide(MAPbBr_(3))nanocrystals stabilized in aqueous HBr solution can achieve simultaneous aromatic bromination and hydrogen evolution using HBr as the bromine source under visible light irradiation.By hybridizing MAPbBr_(3) with Pt/Ta_(2)O_(5) and poly(3,4‐ethylenedioxythiophene)polystyrene sulfonate as electron‐and hole‐transporting motifs,aromatic bromides were achieved from aromatic compounds with high yield(up to 99%)and selectivity(up to 99%)with the addition of N,N‐dimethylformamide or its analogs.The mechanistic studies revealed that the bromination proceeds via an electrophilic attack pathway and that HOBr may be the key intermediate in the bromination reaction.
文摘Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51371193 and 11534015)the Youth Innovation Promotion of the Chinese Academy of Sciences(Grant No.2013004)the Science Fund from the Chinese Academy of Sciences(Grant Nos.XDB07030200 and KJZD-EW-M05)
文摘We present a study of magnetocaloric effect of the quasi-two-dimensional(2D) ferromagnet(CH_3NH_3)_2CuCl_4 in ab plane(easy-plane). From the measurements of magnetic field dependence of magnetization at various temperatures,we have discovered a large magnetic entropy change associated with the ferromagnetic–paramagnetic transition. The heat capacity measurements reveal an abnormal adiabatic change below the Curie temperature T_c^8.9 K, which is caused by the nature of quasi-2D layered crystal structure. These results suggest that perovskite organic–inorganic hybrids with a layered structure are suitable candidates as working substances in magnetic refrigeration technology.
基金Plan Project of Science and Technology of Guangzhou City (2002J1-C0061) The First Author: XI Hongxia(1968-)
文摘hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, 1H-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and 11.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33 values) are 2.91×10 8esu and 6.14×10 8esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after 10h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.
基金supported by the National Natural Science Foundation of China(No.51778374)the Shenzhen Science and Technology Funding Project(JCYJ20150630114140635)
文摘A new iodoplumbate/organic hybrid,[(Et_2DABCO)_2(Pb_3I_(11))(H3 O)]n(1,Et_2DABCO = N,N?-diethyl-1,4-diazabicyclo[2.2.2] octane) has been synthesized using solution method.According to X-ray diffraction structural analysis,the unique(Pb_3I_(11))_n^(5n-) chain in 1 is constructed from face-and edge-sharing PbI_6 octahedra,which is templated by(Et_2DABCO)^(2+) dication possessing both rigidity and flexibility.C-H...I hydrogen bonds contribute to the structure extending from 1D chains to a 3D network.Its energy band gap of 2.64 eV indicates its broad-gap semiconductor nature.It exhibits both photocurrent response property and photocatalytic activity for the degradation of rhodamine B.
基金This work is supported by National Natural Science Foundation of China(No.22072101,22075193,22202020)Natural Science Foundation of Jiangsu Province(No.BK20220483,BK20211306,BK20220027)+2 种基金the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau(SYG201934)Six Talent Peaks Project in Jiangsu Province(No.TD-XCL-006)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Electroreduction of CO_(2) into value-added chemicals and fuels utilizing renewable electricity offers a sustainable way to meet the carbon-neutral goal and a viable solution for the storage of intermittent green energy sources.At the core of this technology is the development of electrocatalysts to accelerate the redox kinetics of CO_(2) reduction reactions(CO_(2)RR)toward high targeted-product yield at minimal energy input.This perspective focuses on a unique category of CO_(2)RR electrocatalysts embodying both inorganic and organic components to synergistically promote the reaction activity,selectivity and stability.First,we summarize recent progress on the design and fabrication of organic/inorganic hybrids CO_(2)RR electrocatalysts,with special attention to the assembly protocols and structural configurations.We then carry out a comprehensive discussion on the mechanistic understanding of CO_(2)RR processes tackled jointly by the inorganic and organic phases,with respect to the regulation of mass and charge transport,modification of double-layer configuration,tailoring of intermediates adsorption,and establishment of tandem pathways.At the end,we outline future challenges in the rational design of organic/inorganic hybrids for CO_(2)RR and further extend the scope to the device level.We hope this work could incentivize more research interests to construct organic/inorganic hybrids for mobilizing electrocatalytic CO_(2)RR towards industrialization.
基金the National Natural Science Foundation of China(21788102),the Research Grants Council of Hong Kong(16305320 and C6014-20W)the Shenzhen Key Laboratory of Functional Aggregate Materials(ZDSYS20211021111400001)+1 种基金the Science Technology Innovation Commission of Shenzhen Municipality(KQTD20210811090142053,GJHZ20210705141810031,and GJHZ20210705143204013)the Innovation and Technology Commission(ITC-CNERC14SC01).
文摘Due to their excellent stability and layer-dependent photoelectronic properties,transition metal dichalcogenides(TMDs)are one of the most extensively studied two-dimensional semiconductor materials in the postgraphene era.However,its low luminescence quantum yield limits its application in displays,lighting,and imaging.Here,a 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile(HATCN)layer was grown on the surface of chemical vapor deposition(CVD)-grown monolayer molybdenum disulfide(MoS_(2))by vacuum evaporation,which increased the photoluminescence intensity of MoS_(2)by 15 times.The enhanced luminescence originates from the charge transfer from the conduction band of MoS_(2)to the lowest unoccupied molecular orbital(LUMO)of HATCN,which suppresses the emission of the negatively charged exciton(trion)while increasing the emission of the neutral exciton.Temperature-dependent fluorescence and Raman spectra demonstrate the feasibility of organic−inorganic hybrid heterojunctions for regulating excitons.This facile and practical organic−inorganic hybrid heterojunction can elevate TMD applications,such as light-emitting diodes.
基金supported by the MOST(Grant No.2013CB934000,2014DFG71590,2011CB935902,2010DFA72760,2011CB711202,2013AA050903,2011AA11A257 and 2011AA11A254)China Postdoctoral Science Foundation(Grant No.2013M530599 and 2013M540929)+2 种基金Tsinghua University Initiative Scientific Research Program(Grant No.2010THZ08116,2011THZ08139,2011THZ01004 and 2012THZ08129)the State Key Laboratory of Automotive Safety and Energy(No.ZZ2012-011)Suzhou(Wujiang)Automotive Research Institute,Tsinghua University,Project No.2012WJ-A-01
文摘Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.
基金financial support by the National Natural Science Foundation of China (20972057, 20772043)the Excellent Scientist Foundation of Anhui Province, China (04046080)the Natural Science Foundation of Anhui Province's Higher Education, China (KJ2009B212Z)
文摘The immobilized nickel(II) on the organic-inorganic hybrid material was prepared and used as an effective catalyst for the Biginelli reaction.In the presence of the immobilized nickel catalyst,aromatic aldehydes reacted with ethyl acetoacetate and urea (or thiourea) smoothly to generate the corresponding Biginelli products in good to excellent yields without using any additive.The work-up procedure is very simple and practical.Furthermore,the silica-supported nickel(II) could be recovered and recycled for six consecutive trials without significant loss of its catalytic activity.
基金the Beijing Municipal High Level Innovative Team Building Program (IDHT20190503)the National Natural Science Fund for Innovative Research Groups of China (51621003)the National Natural Science Foundation of China (12074017)。
文摘Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.
文摘A kind of inorganic organic hybrid 18 molybdodiphosphate nanoparticles ([(C 4H 9) 4N] 6P 2Mo 18 O 62 ·4H 2O) was firstly used as a bulk modifier to fabricate a three dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square wave voltammetry. The hybrid 18 molybdodiphosphate nanoparticles bulk modified CPE (MNP CPE) displayed a high electrocatalytic activity towards the reduction of nitrite, bromate and hydrogen peroxide. The remarkable advantages of the MNP CPE over the traditional polyoxometalates modified electrodes are their excellent reproducibility of surface renewal and high stability owing to the insolubility of the hybrid 18 molybdodiphosphate nanoparticles.
文摘A novel inorganic organic hybrid material, Fe 2O(OH)(C 5H 4 ~NCOO)SO 4 was synthesized via solvothermal route using a reaction of FeCl 3·6H 2O, KCNS, and 4 cyanopyridine in aqueous solution of H 2O 2 and ethanol at 130 ℃ for 3 d. The compound crystallized in monoclinic space group P 2 1, with cell parameters a =0 73850(15) nm, b =0 65100(13) nm, c =1 0546(2) nm, β =90 36(3)°, V =0 50700(18) nm 3 and Z =2. The structure is constructed with inorganic layered [Fe 2O(OH)SO 4] + cations linked by organic (C 5H 4NCOO) - anions. The compound is thermally stable up to approximately 240 ℃.
文摘Organic/inorganic material has attracted great attentions because its importance as photonic materials. We report on our recent results on organic/inorganic hybrid sol-gel materials and optical waveguides like splitter, thermo-optic switch and micro-cavity laser.
文摘The current study investigated the effects of novel hybrid polyacrylamide polymers as ash (slime) depressants in fine coal flotation to enhance combustible recovery and ash rejection. Coal samples at P<sub>80</sub> of approximately 45 um with ~25% ash content were floated in the presence of in-house synthesized hybrid aluminum hydroxide polyacrylamide polymers (Al(OH)<sub>3</sub>-PAM, or Al-PAM). All flotation experiments were carried out in a 5-L Denver flotation cell. Various influencing factors were examined to optimize the flotation process in the presence of the Al-PAM polymers, including the Al-PAM dosage, Al-PAM conditioning time, impeller rotation speed and pulp pH. Comparative and synergistic studies were also performed using organic polyacrylamide polymers (PAMs), commercial dispersants and Al-PAM/dispersant system. Results showed a significant improvement in both combustible recovery and ash rejection at an Al-PAM dosage of 0.25 mg/L. The maximum combustible recovery obtained, at natural pH, with Al-PAM and Al-PAM/dispersant system was determined to be 70% and 66% at ash content of 7.74% and 7.4%, respectively. Zeta potential values of both the raw coal and concentrate products showed a large shift toward more positive values (from ˉ50 mV to ˉ13 mV), indicating a significant decrease in ash-forming minerals (slimes) when Al-PAM polymers were applied.
基金Funded by the National Natural Science Foundation of China (No.50802069)the Natural Science Foundation of Wuhan University of Tech-nology (471-38650378)
文摘We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, and CdS nanoparticles as photosensitizers to manifest photorefractive (PR) effect. The unpoled PVNPAK film exhibits a second harmonic generation (SHG) coefficient of 4.7 pm/V due to the possibility of self-alignment of the azo chromophore. Significant enhancement of photoconductivity is noticed with the increase of CdS nanoparticles concentration. The photorefractive property of the polymer nanocomposites were determined by two-beam coupling (TBC) experiment. The TBC gain and diffraction efficiency of 11.89 cm-1 and 3.2% were obtained for PVNPAK/CdS at zero electrical field.
基金the Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515110819 and 2020A1515010767)NRF-CRP grant“Two Dimensional Covalent Organic Framework:Synthesis and Applications”(No.NRF-CRP16-2015-02,funded by National Research Foundation,Prime Minister’s Office,Singapore)+1 种基金the Shenzhen Peacock Plan(No.KQTD2016053112042971)the National Natural Science Foundation of China(Nos.21802067 and 21771156).
文摘The on-surface self-assembly of inorganic atomic clusters and organic molecules offers significant opportunities to design novel hybrid materials with tailored functionalities.By adopting the advantages from both inorganic and organic components,the hybrid self-assembly molecules have shown great potential in future optoelectrical devices.Herein,we report the co-deposition of 4,8-diethynylbenzo[1,2-d-4,5-d0]bisoxazole(DEBBA)and Se atoms to produce a motif-adjustable organic–inorganic hybrid self-assembly system via the non-covalent interactions.By controlling the coverage of Se atoms,various chiral molecular networks containing Se,Se_(6),Se_(8),and terminal alkynes evolved on the Ag(111)surface.In particular,with the highest coverage of Se atoms,phase segregation into alternating one-dimensional chains of non-covalently bonded Se_(8) clusters and organic ligands has been noticed.The atom-coverage dependent evolution of self-assembly structures reflects the remarkable structural adaptability of Se clusters as building blocks based on the spontaneous resize to reach the maximum non-covalent interactions.This work has significantly extended the possibilities of flexible control in self-assembly nanostructures to enable more potential functions for broad applications.