Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase th...Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups.With these physicochemical properties,the inverted OLED shows a record-high external quantum efficiency of 10.0% at a high brightness of 45,610 cd m^(-2) and can deliver a maximum brightness of 121,865 cd m^(-2).Besides,the inverted OLED is also demonstrated to possess an excellent air stability(humidity,35%)with a half-brightness operating time of 541 h@1000 cd m^(-2) without any protection nor encapsulation.展开更多
The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'- biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (A...The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'- biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (both emission and electron transport layers) is improved remarkably by inserting a LiF interlayer into the hole transport layer. This thin LiF interlayer can effectively influence electrical performance and significantly improve the current efficiency of the device. A device with an optimum LiF layer thickness at the optimum position in NPB exhibits a maximum current efficiency of 5.96 cd/A at 215.79 mA/cm2, which is about 86% higher than that of an ordinary device (without a LiF interlayer, 3.2 cd/A). An explanation can be put forward that LiF in the NPB layer can block holes and balance the recombination of holes and electrons. The results may provide some valuable references for improving OLED current efficiency.展开更多
Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue therm...Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.展开更多
High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of...High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyl- 1,1'-biphenyl-4,4'- diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.展开更多
Double-layer organic electroluminescent devices have been constructed. A new fluorescent dye, 9,10-bis(phenylethynyl)anthracence, was chosen as the dopant which was molecularly dispersed in the polymer film, and green...Double-layer organic electroluminescent devices have been constructed. A new fluorescent dye, 9,10-bis(phenylethynyl)anthracence, was chosen as the dopant which was molecularly dispersed in the polymer film, and green light was observed from the device with luminance of 130cd/m(2) at 17V.展开更多
We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be ef...We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120℃. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120℃ annealed pentacene film and n-doped electron transport layer(ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m^2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device.展开更多
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage c...The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.展开更多
A numerical model of multilayer organic light-emitting devices is presented in this article. This model is based on the drift-diffusion equations which include charge injection, transport, space charge effects, trappi...A numerical model of multilayer organic light-emitting devices is presented in this article. This model is based on the drift-diffusion equations which include charge injection, transport, space charge effects, trapping, heterojunction interface and recombination process. The device structure in the simulation is ITO/CuPc (20 nm)/NPD (40 nm)/Alq3 (60 nm)/LiF/Al. There are two heterojunctions which should be dealt with in the simulation. The I-V characteristics, carrier distribution and recombination rate of a device are calculated. The simulation results and measured data are in good agreement.展开更多
This paper reports that the doped bi-layer organic light-emitting devices are fabricated by doping in different regions of the light-emitting layer, the admittance and luminance spectra to characterize the capacitance...This paper reports that the doped bi-layer organic light-emitting devices are fabricated by doping in different regions of the light-emitting layer, the admittance and luminance spectra to characterize the capacitance and luminance of the device are measured. Negative capacitance (NC) appeared at low frequencies when the doped devices are biased with high voltages. The measured phase difference between AC voltage applied across the device and AC current flowing through the device show that the device is inductive when NC appears.展开更多
We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first...We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first group of devices based on Alq3, we insert a thin Al layer of different thickness into Cs2CO3 injection layer, and the device's maximum current efficiency of 6.5 cd/A is obtained when the thickness of the thin Al layer is 0.4 nm. However, when the thickness of Al layer is 0.8 nm, the capacity of electron injection is the strongest. To validate the universality of this approach, then we fabricate another group of devices based on another blue emitting material. The maximum current efficiency of the device without and with a thin Al layer is 4.51 cd/A and 4.84 cd/A, respectively. Inserting a thin Al layer of an appropriate thickness into Cs2CO3 layer can result in the reduction of electron injection barrier, enhancement of the electron injection, and improvement of the performance of OLEDs. This can be attributed to the mechanism that thermally evaporated Cs2CO3 decomposes into cesium oxides, the thin Al layer reacts with cesium oxides to form Al–O–Cs complex, and the amount of the Al–O–Cs complex can be controlled by adjusting the thickness of the thin Al layer.展开更多
A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consum...A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs.展开更多
In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhanceme...In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhancement stack consists of a thin metal anode layer,a dielectric bilayer,and a thick metal underlayer.The resulting device,with the optimized contrast-enhancement stack thicknesses of Ni(30 nm)/MgF 2(62 nm)/ZnS(16 nm)/Ni(20 nm) and the 25-nm-thick ZnS anti-reflection layer,achieves a luminous reflectance of 4.01% in the visible region and a maximum current efficiency of 0.99 cd/A(at 62.3 mA/cm 2) together with a very stable chromaticity.The contrast ratio reaches 561:1 at an on-state brightness of 1000 cd/m^2 under an ambient illumination of 140 lx.In addition,the anti-reflection layer can also enhance the transmissivity of the cathode and improve light out-coupling by the effective restraint of microcavity effects.展开更多
A bilayer model with ohmic anode contact and injection limited cathode contact has been proposed to calculate the recombination efficiency and recombination zone width of the device. The effects of the thickness of ho...A bilayer model with ohmic anode contact and injection limited cathode contact has been proposed to calculate the recombination efficiency and recombination zone width of the device. The effects of the thickness of hole transport layer and the barriers of organic/organic interface on the combination efficiency and recombination width have been discussed. It is found that: (1) When the electrons are blocked fully and the holes are not blocked significantly at the organic/organic interface, for a given Lh/L, the recombination efficiency increases with increasing the applied voltage, but at a higher applied voltage, the recombination efficiency decreases with increasing Lh/L; (2) The recombination efficiency increases with increasing applied voltage and Hh', and when applied voltage and Hh' exceed some value, the recombination efficiency appears as a plateau; (3) The recombination width decreases with increasing the applied voltage and Lh/L. This model might explain the relative experiment phenomena.展开更多
A new structure containing negative refractive index dielectric layer(NRlDL) is introduced into microcavity. The properties of the new mierocavity organic light-emitting devices(MOLEDs) are investigated. In the ex...A new structure containing negative refractive index dielectric layer(NRlDL) is introduced into microcavity. The properties of the new mierocavity organic light-emitting devices(MOLEDs) are investigated. In the experiment, the transfer matrix method is adopted. The dependence of reflectance and transmittance on the refractive index and thickness of NRIDL are analyzed in detail. Compared with the electroluminescence spectra of non-NRIDL diodes, the line widths of the spectra of the MOLEDs are narrower and all the peaks enhance. The results show that the new structure is beneficial to improve the performance and reduce the thickness of microcavity devices.展开更多
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materia...Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.展开更多
In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)...In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)2acac(10 nm)/Alq3(25 nm)/BCP(5 nm)/Cs F(1 nm)/Al(150 nm)(x= 0.15,2.5 and 3.0 wt%),where NPB and BCP are used as the hole-injecting layer,electron transporting and hole blocking layer,respectively.White light emission was realized in an OLED with 2.5% Ir(btp)2acac doping concentration.The device exhibits peak efficiency of 1.93 cd/A at 9 V and maximum brightness of 7005 cd/m^2 at 14 V.The Commission International de I'Eclairage(CIE)(1931) coordinates of white emission are well within the white zone,which moves from(0.35,0.33) to(0.26,0.30) when the applied voltage is varied from 5 V to 14 V.展开更多
We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs...We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs) could impede the hole injection and facilitate the electron transport, which can improve the carrier balance and further expand the exciton generation region. The maximal current efficiency of the optimal device is 5.89 cd/A at 1.81 mA/cm2 , which is about 2.19 times higher than that of the control device (CD) without the CCL, and the maximal luminance is 19.660 cd/m2 at 12V. The device shows a good color stability though the green light emitting material Alq3 is introduced as the CCL in the EML, but it has a poor lifetime due to the formation of cationic Alq3 species.展开更多
The driving voltage of an organic light-emitting diode(OLED) is lowered by employing molybdenum trioxide(MoO3)/N,N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine(NPB) multiple quantum well(MQW) struc...The driving voltage of an organic light-emitting diode(OLED) is lowered by employing molybdenum trioxide(MoO3)/N,N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine(NPB) multiple quantum well(MQW) structure in the hole transport layer.For the device with double quantum well(DQW) structure of ITO/[MoO3(2.5 nm)/NPB(20 nm)]2/Alq3(50 nm)/LiF(0.8 nm)/Al(120 nm)],the turn-on voltage is reduced to 2.8 V,which is lowered by 0.4 V compared with that of the control device(without MQW structures),and the driving voltage is 5.6 V,which is reduced by 1 V compared with that of the control device at the 1000 cd/m2.In this work,the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure,which is attributed not only to the reduced energy barrier between ITO and NPB,but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.展开更多
A 10-nm-thick molybdenum tri-oxide(MoO3) thin film was used as the interconnector layer in tandem organic lightemitting devices(OLEDs).The tandem OLEDs with two identical emissive units consisting of N,N-bis(naph...A 10-nm-thick molybdenum tri-oxide(MoO3) thin film was used as the interconnector layer in tandem organic lightemitting devices(OLEDs).The tandem OLEDs with two identical emissive units consisting of N,N-bis(naphthalen-1-yl)N,N-bis(phenyl)-benzidine(NPB) /tris(8-hydroxyquinoline) aluminum(Alq3) exhibited current efficiency-current density characteristics superior to the conventional single-unit devices.At 20 mA/cm2,the current efficiency of the tandem OLEDs using the interconnector layers of MoO3 thin film was about 4.0 cd/A,which is about twice that of the corresponding conventional single-unit device(1.8cd/A).The tandem OLED showed a higher power efficiency than the conventional single-unit device for luminance over 1200cd/m2.The experimental results demonstrated that a MoO3 thin film with a proper thickness can be used as an effective interconnector layer in tandem OLEDs.Such an interconnector layer can be easily fabricated by simple thermal evaporation,greatly simplifying the device processing and fabrication processes required by previously reported interconnector layers.A possible explanation was proposed for the carrier generation of the MoO3 interconnector layer.展开更多
A controllable etching process for indium zinc oxide (IZO) films was developed by using a weak etchant of oxalic acid with a slow etching ratio. With controllable etching time and temperature, a patterned IZO electr...A controllable etching process for indium zinc oxide (IZO) films was developed by using a weak etchant of oxalic acid with a slow etching ratio. With controllable etching time and temperature, a patterned IZO electrode with smoothed surface morphology and slope edge was achieved. For the practical application in organic light emitting devices (OLEDs), a sup- pression of the leak current in the current-voltage characteristics of OLEDs was observed. It resulted in a 1.6 times longer half lifetime in the IZO-based OLEDs compared to that using an indium tin oxide (ITO) anode etched by a conventional strong etchant of aqua regia.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61905086,62174067,62175085)Science and Technology Development Planning of Jilin Province(Project Nos.20190101024JH,20200201296JC)+1 种基金the Hong Kong Scholars Program(Project No.XJ2020028)grants from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project Nos.11300418 and 11300419).
文摘Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups.With these physicochemical properties,the inverted OLED shows a record-high external quantum efficiency of 10.0% at a high brightness of 45,610 cd m^(-2) and can deliver a maximum brightness of 121,865 cd m^(-2).Besides,the inverted OLED is also demonstrated to possess an excellent air stability(humidity,35%)with a half-brightness operating time of 541 h@1000 cd m^(-2) without any protection nor encapsulation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60906022 and 60876046)the Tianjin Natural Science Foundation of China (Grant No. 10JCYBJC01100)
文摘The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'- biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (both emission and electron transport layers) is improved remarkably by inserting a LiF interlayer into the hole transport layer. This thin LiF interlayer can effectively influence electrical performance and significantly improve the current efficiency of the device. A device with an optimum LiF layer thickness at the optimum position in NPB exhibits a maximum current efficiency of 5.96 cd/A at 215.79 mA/cm2, which is about 86% higher than that of an ordinary device (without a LiF interlayer, 3.2 cd/A). An explanation can be put forward that LiF in the NPB layer can block holes and balance the recombination of holes and electrons. The results may provide some valuable references for improving OLED current efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675041 and 61605253)the Foundation for Innovation Research Groups of the National Natural Science Foundation of China(Grant No.61421002)the Science&Technology Department Program of Sichuan Province,China(Grant No.2016HH0027)
文摘Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.
基金This was work supported in part by the National Nature Science Foundation oChina under Grant No. 60425101.
文摘High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyl- 1,1'-biphenyl-4,4'- diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.
文摘Double-layer organic electroluminescent devices have been constructed. A new fluorescent dye, 9,10-bis(phenylethynyl)anthracence, was chosen as the dopant which was molecularly dispersed in the polymer film, and green light was observed from the device with luminance of 130cd/m(2) at 17V.
基金Project supported by the National Natural Science Foundation of China(Grant No.60906022)the Natural Science Foundation of Tianjin,China(Grant No.10JCYBJC01100)+1 种基金the Key Science and Technology Support Program of Tianjin,China(Grant No.14ZCZDGX00006)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120℃. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120℃ annealed pentacene film and n-doped electron transport layer(ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m^2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device.
基金Supported by the National Natural Science Foundation of China(No. 20372060), the Key National Natural Science Foundationof China(No. 20131010), the Important National Natural Science Foundation of China(No. 20490210), the"863"Program(Nos.2002AA302105 and 2002AA324080) and Foreign Communion &Cooperation of National Natural Science Foundation of China(No.20340420326).
文摘The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.
基金Project supported by Zhejiang Yangguang Cooperation Foundation, China (Grant No W050317)
文摘A numerical model of multilayer organic light-emitting devices is presented in this article. This model is based on the drift-diffusion equations which include charge injection, transport, space charge effects, trapping, heterojunction interface and recombination process. The device structure in the simulation is ITO/CuPc (20 nm)/NPD (40 nm)/Alq3 (60 nm)/LiF/Al. There are two heterojunctions which should be dealt with in the simulation. The I-V characteristics, carrier distribution and recombination rate of a device are calculated. The simulation results and measured data are in good agreement.
基金supported by the Natural Science Foundation of the Shanghai Committee of Science and Technology,China (GrantNo. 08JC1402300)
文摘This paper reports that the doped bi-layer organic light-emitting devices are fabricated by doping in different regions of the light-emitting layer, the admittance and luminance spectra to characterize the capacitance and luminance of the device are measured. Negative capacitance (NC) appeared at low frequencies when the doped devices are biased with high voltages. The measured phase difference between AC voltage applied across the device and AC current flowing through the device show that the device is inductive when NC appears.
基金supported by the National Natural Science Foundation of China(Grant No.60906022)the Natural Science Foundation of Tianjin,China(Grant No.10JCYBJC01100)+2 种基金the Scientific Developing Foundation of Tianjin Education Commission,China(Grant No.2011ZD02)the Key Science and Technology Support Program of Tianjin,China(Grant No.14ZCZDGX00006)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘We investigate the electron injection effect of inserting a thin aluminum(Al) layer into cesium carbonate(Cs2CO3)injection layer. Two groups of organic light-emitting devices(OLEDs) are fabricated. For the first group of devices based on Alq3, we insert a thin Al layer of different thickness into Cs2CO3 injection layer, and the device's maximum current efficiency of 6.5 cd/A is obtained when the thickness of the thin Al layer is 0.4 nm. However, when the thickness of Al layer is 0.8 nm, the capacity of electron injection is the strongest. To validate the universality of this approach, then we fabricate another group of devices based on another blue emitting material. The maximum current efficiency of the device without and with a thin Al layer is 4.51 cd/A and 4.84 cd/A, respectively. Inserting a thin Al layer of an appropriate thickness into Cs2CO3 layer can result in the reduction of electron injection barrier, enhancement of the electron injection, and improvement of the performance of OLEDs. This can be attributed to the mechanism that thermally evaporated Cs2CO3 decomposes into cesium oxides, the thin Al layer reacts with cesium oxides to form Al–O–Cs complex, and the amount of the Al–O–Cs complex can be controlled by adjusting the thickness of the thin Al layer.
基金Supported by the Nanjing University of Telecommunication and Posts under Grant No NY212010the National Natural Science Foundation of China under Grant Nos 91233117,50973104 and 51333007+2 种基金the Natural Science Fund of Jiangsu Province under Grant No BK2012834the National Basic Research Program of China under Grant No 2015CB932200the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No. 2009CB930600)the National Natural Science Foundation of China (Grant Nos. 60907047,61274065,60977024,21101095,20974046,21003076,51173081,and 61136003)+3 种基金the Specialized Research Foundation for the Doctoral Program of Higher Education,China (Grant No. 20093223120003)the Natural Science Foundation of Institutions of Higher Education of Jiangsu Province,China (Grant Nos. SJ209003,09KJB150009,10KJB510013,and TJ209035)the "Qing Lan" Program of Jiangsu Province,Chinathe Program of Nanjing University of Posts and Telecommunications,China (Grant Nos. NY210015,NY211069,and NY210040)
文摘In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhancement stack consists of a thin metal anode layer,a dielectric bilayer,and a thick metal underlayer.The resulting device,with the optimized contrast-enhancement stack thicknesses of Ni(30 nm)/MgF 2(62 nm)/ZnS(16 nm)/Ni(20 nm) and the 25-nm-thick ZnS anti-reflection layer,achieves a luminous reflectance of 4.01% in the visible region and a maximum current efficiency of 0.99 cd/A(at 62.3 mA/cm 2) together with a very stable chromaticity.The contrast ratio reaches 561:1 at an on-state brightness of 1000 cd/m^2 under an ambient illumination of 140 lx.In addition,the anti-reflection layer can also enhance the transmissivity of the cathode and improve light out-coupling by the effective restraint of microcavity effects.
基金Excellent Youth Foundation of Hunan Province(03JJY1008) Science Foundation for Post-doctorate of China(2004035083)
文摘A bilayer model with ohmic anode contact and injection limited cathode contact has been proposed to calculate the recombination efficiency and recombination zone width of the device. The effects of the thickness of hole transport layer and the barriers of organic/organic interface on the combination efficiency and recombination width have been discussed. It is found that: (1) When the electrons are blocked fully and the holes are not blocked significantly at the organic/organic interface, for a given Lh/L, the recombination efficiency increases with increasing the applied voltage, but at a higher applied voltage, the recombination efficiency decreases with increasing Lh/L; (2) The recombination efficiency increases with increasing applied voltage and Hh', and when applied voltage and Hh' exceed some value, the recombination efficiency appears as a plateau; (3) The recombination width decreases with increasing the applied voltage and Lh/L. This model might explain the relative experiment phenomena.
基金Natural Science Research Item of Education Department of Henan Province(2008A430009)Doctor Foundation of Henan Polytechnic University(B2008-22)
文摘A new structure containing negative refractive index dielectric layer(NRlDL) is introduced into microcavity. The properties of the new mierocavity organic light-emitting devices(MOLEDs) are investigated. In the experiment, the transfer matrix method is adopted. The dependence of reflectance and transmittance on the refractive index and thickness of NRIDL are analyzed in detail. Compared with the electroluminescence spectra of non-NRIDL diodes, the line widths of the spectra of the MOLEDs are narrower and all the peaks enhance. The results show that the new structure is beneficial to improve the performance and reduce the thickness of microcavity devices.
基金Research funding from the Shanghai Municipal Education Commission in the framework of the oriental scholar and distinguished professor designationfunding from the National Natural Science Foundation of China(NSFC)
文摘Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.
文摘In this paper,a white organic light-emitting device(WOLEDs) with multiple-emissive-layer structure has been fabricated.The device has a simple structure of indium tin oxide(ITO)/NPB(20 nm)//DPVBi(20 nm)/CDBP:x Ir(btp)2acac(10 nm)/Alq3(25 nm)/BCP(5 nm)/Cs F(1 nm)/Al(150 nm)(x= 0.15,2.5 and 3.0 wt%),where NPB and BCP are used as the hole-injecting layer,electron transporting and hole blocking layer,respectively.White light emission was realized in an OLED with 2.5% Ir(btp)2acac doping concentration.The device exhibits peak efficiency of 1.93 cd/A at 9 V and maximum brightness of 7005 cd/m^2 at 14 V.The Commission International de I'Eclairage(CIE)(1931) coordinates of white emission are well within the white zone,which moves from(0.35,0.33) to(0.26,0.30) when the applied voltage is varied from 5 V to 14 V.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60906022 and 60676051)the Natural Science Foundation of Tianjin,China (Grant No. 10JCYBJC01100)+2 种基金the Scientific Developing Foundation of Tianjin Education Commission, China (Grant No. 2011ZD02)the Jiangsu Provincial Natural Science Development Foundation for University, China (Grant No. 09KJB140006)the Tianjin Natural Science Council (Grant No. 10SYSYJC28100)
文摘We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs) could impede the hole injection and facilitate the electron transport, which can improve the carrier balance and further expand the exciton generation region. The maximal current efficiency of the optimal device is 5.89 cd/A at 1.81 mA/cm2 , which is about 2.19 times higher than that of the control device (CD) without the CCL, and the maximal luminance is 19.660 cd/m2 at 12V. The device shows a good color stability though the green light emitting material Alq3 is introduced as the CCL in the EML, but it has a poor lifetime due to the formation of cationic Alq3 species.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60906022 and 60676051)the Natural Science Foundation of Tianjin,China (Grant No. 10JCYBJC01100)+1 种基金the Scientific Developing Foundation of Tianjin Education Commission,China (Grant No. 2011ZD02)the Jiangsu Natural Science Development Foundation for University,China (Grant No. 09KJB140006)
文摘The driving voltage of an organic light-emitting diode(OLED) is lowered by employing molybdenum trioxide(MoO3)/N,N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine(NPB) multiple quantum well(MQW) structure in the hole transport layer.For the device with double quantum well(DQW) structure of ITO/[MoO3(2.5 nm)/NPB(20 nm)]2/Alq3(50 nm)/LiF(0.8 nm)/Al(120 nm)],the turn-on voltage is reduced to 2.8 V,which is lowered by 0.4 V compared with that of the control device(without MQW structures),and the driving voltage is 5.6 V,which is reduced by 1 V compared with that of the control device at the 1000 cd/m2.In this work,the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure,which is attributed not only to the reduced energy barrier between ITO and NPB,but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.
基金Project supported by the Doctoral Foundation of the Ministry of Education of China (Grant No. 20100171110025)the State Key Laboratory of Optoelectronic Materials and Technologies,China (Grant No. 2010-RC-3-1)the Fundamental Research Funds for the Central Universities,China (Grant No. 09lgpy25)
文摘A 10-nm-thick molybdenum tri-oxide(MoO3) thin film was used as the interconnector layer in tandem organic lightemitting devices(OLEDs).The tandem OLEDs with two identical emissive units consisting of N,N-bis(naphthalen-1-yl)N,N-bis(phenyl)-benzidine(NPB) /tris(8-hydroxyquinoline) aluminum(Alq3) exhibited current efficiency-current density characteristics superior to the conventional single-unit devices.At 20 mA/cm2,the current efficiency of the tandem OLEDs using the interconnector layers of MoO3 thin film was about 4.0 cd/A,which is about twice that of the corresponding conventional single-unit device(1.8cd/A).The tandem OLED showed a higher power efficiency than the conventional single-unit device for luminance over 1200cd/m2.The experimental results demonstrated that a MoO3 thin film with a proper thickness can be used as an effective interconnector layer in tandem OLEDs.Such an interconnector layer can be easily fabricated by simple thermal evaporation,greatly simplifying the device processing and fabrication processes required by previously reported interconnector layers.A possible explanation was proposed for the carrier generation of the MoO3 interconnector layer.
基金supported by the National Natural Science Foundation of China(Grant Nos.61307036 and 61307037)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Chinathe University Science Research Project of Jiangsu Province,China(Grant No.12KJB510028)
文摘A controllable etching process for indium zinc oxide (IZO) films was developed by using a weak etchant of oxalic acid with a slow etching ratio. With controllable etching time and temperature, a patterned IZO electrode with smoothed surface morphology and slope edge was achieved. For the practical application in organic light emitting devices (OLEDs), a sup- pression of the leak current in the current-voltage characteristics of OLEDs was observed. It resulted in a 1.6 times longer half lifetime in the IZO-based OLEDs compared to that using an indium tin oxide (ITO) anode etched by a conventional strong etchant of aqua regia.