期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Nonadiabatic dynamics of electron injection into organic molecules
1
作者 朱丽萍 邱宇 童国平 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期470-477,共8页
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method... We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value work-function electrode. For polymer/electrode structures This means that the Schottky barrier is pinned for a small we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontneous electron transfer from electrodes to polymers. 展开更多
关键词 nonadiabatic dynamics electron injection organic molecule
下载PDF
Building the bridge of small organic molecules to porous carbons via ionic solid principle
2
作者 Lei Tong Qian-Qian Yang +5 位作者 Shuai Li Le-Le Zhang Wei-Jie Zeng Yan-Wei Ding Liangdong Fan Hai-Wei Liang 《Nano Research》 SCIE EI CSCD 2023年第1期80-87,共8页
Replacing traditional polymer-based precursors with small molecules is a promising pathway toward facile and controllable preparation of porous carbons but remains a prohibitive challenge because of the high volatilit... Replacing traditional polymer-based precursors with small molecules is a promising pathway toward facile and controllable preparation of porous carbons but remains a prohibitive challenge because of the high volatility of small molecules.Herein,a simple,general,and controllable method is reported to prepare porous carbons by converting small organic molecules into organic molecular salts followed by pyrolysis.The robust electrostatic force holding organic molecular salts together leads to negligible volatility and thus ensures the formation of carbons under high-temperature pyrolysis.Meanwhile,metal moieties in organic molecular salts can be evolved into in-situ templates or activators during pyrolysis to create nanopores.The modular nature of organic molecular salts allows easy control of the porosity and chemical doping of carbons at a molecular level.The sulfur-doped carbon prepared by the ionic solid strategy can serve as robust support to prepare small-sized intermetallic PtCo catalysts,which exhibit a high mass activity of 1.62 A·mgPt^(−1)in catalyzing oxygen reduction reaction for fuel cell applications. 展开更多
关键词 porous carbon small organic molecules organic molecular salts ionic solid oxygen reduction reaction
原文传递
Recent progress on the excited-state multiple proton transfer process in organic molecules
3
作者 Wan-Ying Yang Chang-Cun Yan +1 位作者 Xue-Dong Wang Liang-Sheng Liao 《Science China Chemistry》 SCIE EI CAS CSCD 2022年第10期1843-1853,共11页
In contrast to the widely reported excited-state single proton-transfer,excited-state multiple proton transfer(ESMPT)containing two or more intra-or inter-molecular proton transfers has greatly expanded the research s... In contrast to the widely reported excited-state single proton-transfer,excited-state multiple proton transfer(ESMPT)containing two or more intra-or inter-molecular proton transfers has greatly expanded the research scope of the excited-state proton transfers.In recent decades,ESMPT-active organic molecules have attracted much attention owing to their unique photophysical properties,such as large magnitude Stokes shifts and dual emission.These photophysical properties facilitate the application of the organic molecules in organic solid-state lasers,fluorescent probes and sensors,and molecular switches.Herein,we introduce the fundamentals of the ESMPT and review the recent advances in different types of ESMPTs in organic molecules.Finally,we present our conclusions and the future development prospects of the ESMPT in organic molecules. 展开更多
关键词 excited-state multiple proton transfer hydrogen bond PHOTOISOMERIZATION organic molecules photophysical properties
原文传递
Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water
4
作者 Hongli Sun Wei Ou +2 位作者 Like Sun Bo Wang Chenliang Su 《Nano Research》 SCIE EI CSCD 2022年第12期10292-10315,共24页
Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals,with the assistance of reactive hydrogen species,and water as the ultimate hydrogen source.However,the ... Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals,with the assistance of reactive hydrogen species,and water as the ultimate hydrogen source.However,the natural photosynthesis is inefficient due to some intrinsic properties,urging people not only to learn from but also surpass during nature imitation.In this review,we summarized recent progresses on reactive hydrogen species-assisted nanocatalytic reduction of organic molecules towards value-added fine chemicals and pharmaceuticals,with water as the hydrogen source,and especially highlighted how photocatalytically or electrocatalytically evolved reactive hydrogen species synergize with biocatalytic centers and nanocatalytic sites for reduction of organic molecules.The design principles of collaborative semi-artificial systems and nanocatalytic artificial systems,the structure tuning of catalysts for the evolution and utilization of hydrogen species,and the determination of reactive hydrogen species for mechanistic insights were discussed in detail.Finally,perspectives were provided for further advancing this emerging area of nanocatalytic reduction of organic molecules from water(or proton)and organics. 展开更多
关键词 nano-catalysts reactive hydrogen species nature inspiration reduction of organic molecules
原文传递
Photovoltaic molecules based on vinylene-bridged oligothiophene applied for bulk-heterojunction organic solar cells
5
作者 Jing Zhang Pan Yin +4 位作者 Linjun Xu Ping Shen Mingfu Ye Ningyi Yuan Jianning Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期426-431,共6页
We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinyl... We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2. 展开更多
关键词 organic solar cells Photovoltaic organic molecules Vinylene-bridged oligothiophene
下载PDF
The reaction of perfluoroalkanesulfonyl halides Ⅷ. A mild method for introducing BrCF_2 group to organic molecules 被引量:3
6
作者 HUANG, Wei-Yuan ZHANG, Han-Zhong Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 《Chinese Journal of Chemistry》 SCIE CAS CSCD 1992年第3期274-277,共0页
BrCF_2SO_2Br, prepared from sulfinatodehalogenation of CF_2Br_2 followed by bromination of the intermediate BrCF_2SO_2Na, was shown to be a mild and efficient bromodifluoromethylating agent.
关键词 PPM CF A mild method for introducing BrCF2 group to organic molecules The reaction of perfluoroalkanesulfonyl halides
全文增补中
Widespread complex organic molecules in the Galactic center
7
《Science Foundation in China》 CAS 2017年第4期32-,共1页
With the support by the Major Program of the National Natural Science Foundation of China,a research group led by Prof.Shen Zhiqiang(沈志强)from Shanghai Astronomical Observatory,Chinese Academy of Sciences reports ... With the support by the Major Program of the National Natural Science Foundation of China,a research group led by Prof.Shen Zhiqiang(沈志强)from Shanghai Astronomical Observatory,Chinese Academy of Sciences reports the detection of widespread CH2OHCHO(glycolaldehyde) and 展开更多
关键词 Widespread complex organic molecules in the Galactic center
原文传递
Kinetic and thermodynamic synergy of organic small molecular additives enables constructed stable zinc anode
8
作者 Yang Gao Mingshan Wang +10 位作者 Hao Wang Xinpeng Li Yuanwei Chu Zhicheng Tang Yuanlong Feng Jiaqi Wang Yong Pan Zhiyuan Ma Zhenliang Yang Dan Zhou Xing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期62-72,共11页
An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipo... An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipole layer at the internal Helmholtz electrical double layers(HEDLs) under the preferential adsorption function of formate on Zn surface,reducing the occurrence of side reactions at phase interface.Meanwhile,free formate in HEDLs regulates the Zn^(2+) solvation sheath structure to accelerate the desolvation,transference,and deposition kinetics of Zn^(2+).Besides,the hydrolysis reaction of zinc formate increases the hydrogen evolution overpotential,inhibiting the thermodynamic tendency of hydrogen evolution.Consequently,it presents stable cycle for more than 2400 h at 5 mA cm^(-2),as well as an average Coulombic efficiency of 99.8% at 1 A g^(-1) after 800 cycles in the Zn‖VO_(2) full cell.The interphase engineering strategy zinc anode by organic small molecular brings new possibility towards high-performance aqueous zinc-ion batteries. 展开更多
关键词 Zn anode organic small molecule Aqueous zinc-ion battery Zinc formate
下载PDF
Opportunities and challenges of organic flow battery for electrochemical energy storage technology 被引量:2
9
作者 Ziming Zhao Changkun Zhang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期621-639,共19页
For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-acti... For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted. 展开更多
关键词 Electrochemical energy storage Flow battery organic systems organic redox-active molecules
下载PDF
14.46% Efficiency small molecule organic photovoltaics enabled by the well trade-off between phase separation and photon harvesting 被引量:2
10
作者 Chunyu Xu Haiyan Chen +6 位作者 Zijin Zhao Jinhua Gao Xiaoling Ma Shirong Lu Xiaoli Zhang Zeyun Xiao Fujun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期610-617,I0015,共9页
Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 h... Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 have the similar optical bandgap and different absorption coefficients.The corresponding binary SMPVs exhibit different short circuit current density(/sc)(20.38 vs.23.24 mA cm^(-2)),and fill factor(FF)(70.77% vs.67.21%).A 14.46% power conversion efficiency(PCE) is acquired in ternary SMPVs with 30 wt% Y6,companied with a JSC of 24.17 mA cm^(-2) a FF of 68.78% and an open circuit voltage(Voc) of 0.87 V.The improvement on PCE of ternary SMPVs should originate from the well trade-off between phase separation and photon harvesting of ternary active layers by incorporating 30 wt% Y6 in acceptors.This work may deliver insight onto the improved performance of SMPVs by superposing the superiorities of binary SMPVs with similar optical bandgap acceptors into one ternary cell. 展开更多
关键词 Small molecule organic photovoltaics Ternary strategy Non-fullerene acceptor
下载PDF
Two-photon absorption properties of aggregation systems on the basis of (E)-4-(2-nitrovinyl) benzenamine molecules
11
作者 王传奎 张珍 +3 位作者 丁明翠 李小静 孙元红 赵珂 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期230-235,共6页
Aggregation effect caused by the intermolecular hydrogen-bonding interactions on two-photon absorption prop- erties of (E)-4-(2-nitrovinyl) benzenamine molecules is studied at a hybrid density functional level. Th... Aggregation effect caused by the intermolecular hydrogen-bonding interactions on two-photon absorption prop- erties of (E)-4-(2-nitrovinyl) benzenamine molecules is studied at a hybrid density functional level. The geometry optimization studies indicate that there exist two probable conformations for the dimers and three for the trimers. A strong red-shift of the charge-transfer states is shown. The two-photon absorption cross sections of the molecule for certain conformations are greatly enhanced by the aggregation effect, from which a ratio of 1.0:2.6:3.6 is found for the molecule and its dimer and trimer with nearly planar structures. Namely, a 30 or 20 percent increase of the two-photon absorption cross section is observed. 展开更多
关键词 two-photon absorption aggregate effect hydrogen bonding organic molecule
下载PDF
Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO_2 and mica substrates
12
作者 郇庆 胡昊 +3 位作者 潘理达 肖江 杜世萱 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期270-275,共6页
Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule ... Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern. 展开更多
关键词 TETRACYANOQUINODIMETHANE organic molecule deposition seahorse-like patterns
下载PDF
Recent progress on low dimensional perovskite solar cells 被引量:3
13
作者 Lingfeng Chao Ze Wang +2 位作者 Yingdong Xia Yonghua Chen Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1091-1100,共10页
Low dimensional perovskites have recently attracted much attention due to their vertical growth of crys- talline orientation, excellent film morphology, and long-term humidity, light, and heat stability, How- ever, lo... Low dimensional perovskites have recently attracted much attention due to their vertical growth of crys- talline orientation, excellent film morphology, and long-term humidity, light, and heat stability, How- ever, low dimensional perovskites suffer fl'om low power conversion efficiency (PCE) with respect to their three dimensional analogues. Therefore, it is imperative to find excellent low-dimensional perovskite materials for improving the PCE. Previous work has demonstrated that bulkier organic molecules, e,g., C6Hs(CH2)2NH3+ (PEA+), CH3(CH2)3NH3+(n-BAT, iso-BA+), C2H4NH3 +, and polyethylenimine cations (PEI+), play an important role in the formation of low-dimensional perovskites. In this review, we review the recent development of low dimensional perovskites for solar cells application in terms of film preparation, photophysics, and stability of perovskites, as well as the related device structure and physics. We have also discussed the future development of low-dimensional perovskites from materials design, fabri- cation processes, and device structure. 展开更多
关键词 Low dimensional perovskites Perovskite solar cells STABILITY Bulkier organic molecules
下载PDF
Increased light availability enhances tolerance against ocean acidification-related stress in the calcifying macroalga Halimedaopuntia
14
作者 Zhangliang Wei Yating Zhang +1 位作者 Fangfang Yang Lijuan Long 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第12期123-132,共10页
Although the adverse impacts of ocean acidification(OA)on marine calcifiers have been investigated extensively,the anti-stress capabilities regulated by increased light availability are unclear.Herein,the interactive ... Although the adverse impacts of ocean acidification(OA)on marine calcifiers have been investigated extensively,the anti-stress capabilities regulated by increased light availability are unclear.Herein,the interactive effects of three light levels(30μmol photons/(m^(2)·s),150μmol photons/(m^(2)·s),and 240μmol photons/(m^(2)·s)combined with two pCO_(2)concentrations(400 ppmv and 1400 ppmv)on the physiological acclimation of the calcifying macroalga Halimeda opuntia were investigated using a pCO_(2)-light coupling experiment.The OA negatively influenced algal growth,calcification,photosynthesis,and other physiological performances in H.opuntia.The relative growth rate under elevated pCO_(2)conditions significantly declined by 13.14%−41.29%,whereas net calcification rates decreased by nearly three-fold under OA conditions.Notably,increased light availability enhanced stress resistance through the accumulation of soluble organic molecules,especially soluble carbohydrate,soluble protein,and free amino acids,and in combination with metabolic enzyme-driven activities,OA stress was alleviated.The carotenoid content under low light conditions increased markedly,and the rapid light curve of the relative electron transport rate was enhanced significantly by increasing light intensities,indicating that this new organization of the photosynthetic machinery in H.opuntia accommodated light variations and elevated pCO_(2)conditions.Thus,the enhanced metabolic performance of the calcifying macroalga H.opuntia mitigated OA-related stress. 展开更多
关键词 ocean acidification calcifying macroalga light availability soluble organic molecules enzyme-driven activities
下载PDF
Dynamics of cooperative emissions in a cascade three-level molecular system driven by an ultrashort laser pulse
15
作者 刘纪彩 王春兴 +1 位作者 Gel’mukhanov Faris 王传奎 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4211-4217,共7页
This paper investigates the dynamics of cooperative emissions in a cascade three-level system driven by an ultra, short laser pulse by solving numerically the full-wave Maxwell-Bloch equations. The 4, 4'-bis(dimethy... This paper investigates the dynamics of cooperative emissions in a cascade three-level system driven by an ultra, short laser pulse by solving numerically the full-wave Maxwell-Bloch equations. The 4, 4'-bis(dimethylamino) stilbene molecule is used as the model molecule because of its strong two-photon absorption property. The two-colour cooperative emissions are studied as functions of molecular number density and dephasing rate of the dipole coherence. The propagation effects on the evolution of the cooperative radiations are also taken into account. The cooperative radiations are enhanced for large number density of the molecule, while the fast dephasing of the dipole coherence reduces the intensity of the cooperative radiations and delays the emission times or even inhibits the formation of the emissions. The delay time of the radiation decreases with the increase of the molecular number density and the propagation distance. 展开更多
关键词 SUPERFLUORESCENCE ultra-short laser pulse 4 4'-bis(dimethylamino) stilbene organic molecule Maxwell-Bloch equations
下载PDF
Influence of rotational isomerism on two-photon absorption properties of FTC chromophores
16
作者 韩广超 赵珂 +1 位作者 刘朋伟 张立立 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期507-512,共6页
The influence of rotational isomerism on the two-photon absorption (TPA) of FTC chromophores has been investi- gated using the quadratic response theory with the B3LYP functional. Eight rotamers induced by three rot... The influence of rotational isomerism on the two-photon absorption (TPA) of FTC chromophores has been investi- gated using the quadratic response theory with the B3LYP functional. Eight rotamers induced by three rotatable single bonds in the molecule are fully optimized, and it is found that their conformational energies are nearly degenerate. Our calculations demonstrate that rotational isomerism has an important effect on the TPA cross sections. For a certain rotamer, the maximum TPA cross section is enhanced significantly. In addition, in the longer wavelength region, the rotational isomerism could lead to a large shift of the TPA position. 展开更多
关键词 rotational isomerism two-photon absorption organic molecule
下载PDF
Grain Boundary Passivation Modulated by Molecular Doping for High-Performance Perovskite Solar Cells
17
作者 Yangyang Hao Yue Liu Guorui Cao 《Journal of Renewable Materials》 SCIE EI 2022年第12期3505-3519,共15页
Aiming to reduce the defects of perovskite film and improve carrier transport,an organic small molecule,benzo[d]isothiazol-3(2H)-one 1,1-dioxide(OBS),is introduced as an additive in the solution-processing of perovski... Aiming to reduce the defects of perovskite film and improve carrier transport,an organic small molecule,benzo[d]isothiazol-3(2H)-one 1,1-dioxide(OBS),is introduced as an additive in the solution-processing of perovskite and prepare uniform perovskite films with a continuous distribution of OBS at grain boundaries.Fourier trans-form infrared spectroscopy and X-ray photoelectron spectroscopy are conducted to reveal the interactions of hydrogen bonding and coordina tion bonding between OBS and perovskite.Various characterizations(including X-ray diffraction,UV-vis spectroscopy,electrochemical impedance spectroscopy,etc.)are conducted to uncover the effect of OBS on device performance.Consequently,high efficiency of 23.26%is obtained for the OBS-treated device,while the control device shows only a companion efficiency of 21.60%. 展开更多
关键词 Perovskite solar cells organic small molecule grain boundary hydrogen bonding coordination bonding
下载PDF
Light-controlled mass formation of aggregates of molecules in organic compounds
18
作者 Tariel D.Ebralidze Nadia A.Ebralidze +1 位作者 Giorgi A.Mumladze Enriko S.Kitsmarishvili 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第9期823-825,共3页
During the mass formation of aggregates of molecules in a gelatin film dyed with the mixture of chrysophenine and acridine yellow dyes, photo-reorientation, photo-disorientation, and photo-orientation of the molecules... During the mass formation of aggregates of molecules in a gelatin film dyed with the mixture of chrysophenine and acridine yellow dyes, photo-reorientation, photo-disorientation, and photo-orientation of the molecules are observed. Based on these observations, the photo-induction of granular aniso tropy may be realized. 展开更多
关键词 Light-controlled mass formation of aggregates of molecules in organic compounds
原文传递
Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells
19
作者 Shan Jiang Zhiyang Xu +4 位作者 Fuzhi Wang Shilei Tian Yang Wang Chenghao Li Zhan'ao Tan 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第14期1753-1768,共16页
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single-junction solar cells. Employing the wide bandgap perovskite materia... Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single-junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet-visible (UV-Vis) range by front perovskite and near-infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs. 展开更多
关键词 Perovskite solar cells Wide bandgap perovskite Low bandgap organic molecule Tandem solar cells Subcells Interconnection layer Efficiency Open-circuit voltage
原文传递
Unraveling the role of NiSnPH@OOH/CC perovskite hydroxide for efficient electrocatalytic oxidation of methanol to formate
20
作者 Jing Shao Yusheng Fang +2 位作者 Xiaobing Wu Muhammad Imran Abdullah Youkun Tao 《Nano Research》 SCIE EI CSCD 2024年第4期2388-2399,共12页
The sluggish kinetics of oxygen evolution reaction(OER)is the key tailback for hydrogen production from the water electrolysis.Masking OER with thermodynamically auspicious methanol oxidation reaction(MOR)can signific... The sluggish kinetics of oxygen evolution reaction(OER)is the key tailback for hydrogen production from the water electrolysis.Masking OER with thermodynamically auspicious methanol oxidation reaction(MOR)can significantly boost the H_(2) and value-added products production.However,it is currently challenging to achieve a synergistic manipulation of product selectivity and performance for MOR electrocatalyst.Herein,we report NiSnPH@OOH/CC(CC=carbon cloth)perovskite hydroxide nanosphere as an efficient MOR electrocatalyst with high activity,stability,and selectivity towards methanol oxidation to formate.A surface amorphous layer of defect rich NiOOH was generated in operando by selective Sn leaching with stable perovskite hydroxide bulk structure,which mitigates the oxidative power and optimizes the local coordination environment of the active NiOOH sites.In situ Raman combined with electrochemical studies further confirm the key active species,NiOOH,generated in operando enhance the MOR and blocking the over oxidation of methanol to CO_(2).As a result,NiSnPH@OOH/CC effectively masks the OER and attains>99%selectivity with 100%Faradic efficiency for methanol-to-formate.The results of this study show the advances of NiSnPH@OOH/CC as an efficient electrocatalyst for MOR and also suggest its potential applications for various small organic molecules oxidation. 展开更多
关键词 perovskite hydroxide small organic molecules nickel oxy(hydroxide) value-added products methanol oxidation reaction
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部