we have synthesised a series of new optically nonlinear organic materials of cinnamylidene-acetophenone derivatives which have large nonl inear optical susceptibilities and short cut-off wavelengths.
hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) mat...hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, 1H-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and 11.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33 values) are 2.91×10 8esu and 6.14×10 8esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after 10h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.展开更多
The nonlinear optical (NLO) and optical limiting (OL) properties of three new structures of organic NLO guest host Poly(N-vinylcarbozole)/disperse orange 3 (PVK/DO3), PVK/disperse orange 13 (PVK/DO13). and P...The nonlinear optical (NLO) and optical limiting (OL) properties of three new structures of organic NLO guest host Poly(N-vinylcarbozole)/disperse orange 3 (PVK/DO3), PVK/disperse orange 13 (PVK/DO13). and PVK/disperse orange 25 (PVK/DO25) as a solution at different concentrations and as a thin-film sample are studied using continuous wave z-scan system at 532 nm. The open-aperture z-scan data of the NLO materials in the solution and thin-film samples displayed two-photon and saturable absorptions, respectively. The PVK/DO13 exhibites the largest and best values of the nonlinearities, such as n2, β, X(3) compared with those of PVK/DO3 and PVK/DO25. This nonlinearity increases as the concentration increases. Tile results indicate that these NLO materials are good candidates for optical switching and OL devices.展开更多
Energy-efficient electro-optic modulators are at the heart of short-reach optical interconnects,and silicon photonics is considered the leading technology for realizing such devices.However,the performance of all-sili...Energy-efficient electro-optic modulators are at the heart of short-reach optical interconnects,and silicon photonics is considered the leading technology for realizing such devices.However,the performance of all-silicon devices is limited by intrinsic material properties.In particular,the absence of linear electro-optic effects in silicon renders the integration of energy-efficient photonic–electronic interfaces challenging.Silicon–organic hybrid(SOH)integration can overcome these limitations by combining nanophotonic silicon waveguides with organic cladding materials,thereby offering the prospect of designing optical properties by molecular engineering.In this paper,we demonstrate an SOH Mach–Zehnder modulator with unprecedented efficiency:the 1-mm-long device consumes only 0.7 fJ bit^(-1) to generate a 12.5 Gbit s^(-1) data stream with a bit-error ratio below the threshold for hard-decision forward-error correction.This power consumption represents the lowest value demonstrated for a non-resonant Mach–Zehnder modulator in any material system.It is enabled by a novel class of organic electro-optic materials that are designed for high chromophore density and enhanced molecular orientation.The device features an electro-optic coefficient of r33<180 pm V^(-1) and can be operated at data rates of up to 40 Gbit s^(-1).展开更多
A logarithmic expression is proposed to describe relaxation of the polar order in side chain polymers, together with a new way of plotting temperature dependent relaxation data. This results in a straight line extendi...A logarithmic expression is proposed to describe relaxation of the polar order in side chain polymers, together with a new way of plotting temperature dependent relaxation data. This results in a straight line extending even below the glass transition temperature in the case of poled nonlinear optics (NLO) side chain polymers. A simple procedure to determine the rotational diffusion constant D-r is given and D-r values of several polymer systems have been evaluated and compared with each other. It appears that, starting from the conventional and well known poled polymer system currently applied, a further lowering of D-r by about 3 orders of magnitude is necessary in order to reach an acceptable orientational stability or lifetime of poled polymers for practical applications. Attempts have been made to introduce electron push-pull substituents into high thermostable molecular frameworks and results of preliminary measurements are reported.展开更多
文摘we have synthesised a series of new optically nonlinear organic materials of cinnamylidene-acetophenone derivatives which have large nonl inear optical susceptibilities and short cut-off wavelengths.
基金Plan Project of Science and Technology of Guangzhou City (2002J1-C0061) The First Author: XI Hongxia(1968-)
文摘hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, 1H-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and 11.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33 values) are 2.91×10 8esu and 6.14×10 8esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after 10h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.
文摘The nonlinear optical (NLO) and optical limiting (OL) properties of three new structures of organic NLO guest host Poly(N-vinylcarbozole)/disperse orange 3 (PVK/DO3), PVK/disperse orange 13 (PVK/DO13). and PVK/disperse orange 25 (PVK/DO25) as a solution at different concentrations and as a thin-film sample are studied using continuous wave z-scan system at 532 nm. The open-aperture z-scan data of the NLO materials in the solution and thin-film samples displayed two-photon and saturable absorptions, respectively. The PVK/DO13 exhibites the largest and best values of the nonlinearities, such as n2, β, X(3) compared with those of PVK/DO3 and PVK/DO25. This nonlinearity increases as the concentration increases. Tile results indicate that these NLO materials are good candidates for optical switching and OL devices.
基金This work was supported by the European Research Council(ERC Starting Grant‘EnTeraPIC’,number 280145)by the Alfried Krupp von Bohlen und Halbach Foundation,and by the Initiative and Networking Fund of the Helmholtz Association+7 种基金We further acknowledge support by the DFG Center for Functional Nanostructuresby the Karlsruhe International Research School on Teratronics,by the Karlsruhe School of Optics and Photonicsby the Karlsruhe Nano-Micro Facility,by the DFG Major Research Instrumentation Programmeby the EU-FP7 projects PHOXTROT and BigPIPESby Deutsche Forschungsgemeinschaftby the Open Access Publishing Fund of Karlsruhe Institute of TechnologyFurther financial support was obtained from the National Science Foundation(DMR-0905686,DMR-0120967)the Air Force Office of Scientific Research(FA9550-09-1-0682)
文摘Energy-efficient electro-optic modulators are at the heart of short-reach optical interconnects,and silicon photonics is considered the leading technology for realizing such devices.However,the performance of all-silicon devices is limited by intrinsic material properties.In particular,the absence of linear electro-optic effects in silicon renders the integration of energy-efficient photonic–electronic interfaces challenging.Silicon–organic hybrid(SOH)integration can overcome these limitations by combining nanophotonic silicon waveguides with organic cladding materials,thereby offering the prospect of designing optical properties by molecular engineering.In this paper,we demonstrate an SOH Mach–Zehnder modulator with unprecedented efficiency:the 1-mm-long device consumes only 0.7 fJ bit^(-1) to generate a 12.5 Gbit s^(-1) data stream with a bit-error ratio below the threshold for hard-decision forward-error correction.This power consumption represents the lowest value demonstrated for a non-resonant Mach–Zehnder modulator in any material system.It is enabled by a novel class of organic electro-optic materials that are designed for high chromophore density and enhanced molecular orientation.The device features an electro-optic coefficient of r33<180 pm V^(-1) and can be operated at data rates of up to 40 Gbit s^(-1).
文摘A logarithmic expression is proposed to describe relaxation of the polar order in side chain polymers, together with a new way of plotting temperature dependent relaxation data. This results in a straight line extending even below the glass transition temperature in the case of poled nonlinear optics (NLO) side chain polymers. A simple procedure to determine the rotational diffusion constant D-r is given and D-r values of several polymer systems have been evaluated and compared with each other. It appears that, starting from the conventional and well known poled polymer system currently applied, a further lowering of D-r by about 3 orders of magnitude is necessary in order to reach an acceptable orientational stability or lifetime of poled polymers for practical applications. Attempts have been made to introduce electron push-pull substituents into high thermostable molecular frameworks and results of preliminary measurements are reported.