期刊文献+
共找到7,441篇文章
< 1 2 250 >
每页显示 20 50 100
Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water:A Review
1
作者 Xiufeng Zhu Jingying Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第4期671-692,共22页
SR-AOP(sulfate radical advanced oxidation process)is a novel water treatment method able to eliminate refractory organic pollutants.Hydrodynamic cavitation(HC)is a novel green technology,that can effectively produce s... SR-AOP(sulfate radical advanced oxidation process)is a novel water treatment method able to eliminate refractory organic pollutants.Hydrodynamic cavitation(HC)is a novel green technology,that can effectively produce strong oxidizing sulfate radicals.This paper presents a comprehensive review of the research advancements in these fields and a critical discussion of the principal factors influencing HC-enhanced SR-AOP and the mechanisms of synergistic degradation.Furthermore,some insights into the industrial application of HC/PS are also provided.Current research shows that this technology is feasible at the laboratory stage,but its application on larger scales requires further understanding and exploration.In this review,some attention is also paid to the design of the hydrodynamic cavitation reactor and the related operating parameters. 展开更多
关键词 Hydrodynamic cavitation organic pollutant PERSULFATE degradation influence factor
下载PDF
Microbial Degradation of Organic Contaminants in Streambed/Floodplain Sediments in Passaic River—New Jersey Area
2
作者 Taheim Evans English Meghann Trombetta +1 位作者 Alyssa Beres Yusuf Yildiz 《American Journal of Analytical Chemistry》 CAS 2024年第4期139-150,共12页
This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the... This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the surrounding physical environment. Microbial degradation of organic contaminants is important for the detoxification of toxic substances thereby minimizing stagnation in the environment and accumulating in the food chain. Since organic contaminants are not easily dissolved in water, they will penetrate sediment and end up enriching the adjacent soil. The hypothesis that we are testing is microbial activity and carbon isotope fractionation will be greater in preserved soils than urban soils. The reason why this is expected to be the case is the expectation of higher microbial activity in preserved environments due to less exposure to pollutants, better soil structure, higher organic matter content, and more favorable conditions for microbial growth. This is contrasted with urban soils, which are impacted by pollutants and disturbances, potentially inhibiting microbial activity. We wish to collect soil samples adjacent to the Passaic River at a pristine location, Great Swamp Wildlife Refuge, a suburban location, Goffle Brook Park, Hawthorne NJ, and an urban location, Paterson NJ. These soil samples will be weighed for soil organic matter (SOM) and weighed for isotope ratio mass spectrometry (IRMS) to test organic carbon isotopes. High SOM and δ13C depletion activity indicate microbial growth based on the characteristics of the soil horizon rather than the location of the soil sample which results in degradation of organic compounds. 展开更多
关键词 organic Contaminant PCBS Microbial degradation Passaic River
下载PDF
Visible-light degradation of azo dyes by imine-linked covalent organic frameworks 被引量:1
3
作者 Hongbo Xue Sen Xiong +1 位作者 Kai Mi Yong Wang 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期194-199,共6页
Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved i... Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved in water.Visible light generates different types of radicals from COFs,and superoxide radicals break N=N bonds in dye molecules,resulting in 100%degradation of azo dyes within 1 h.In contrast,these dyes cannot be degraded by conventionally used photocatalysts,for example,TiO2.Importantly,the COF photocatalysts can be recovered from the dye solutions and re-used to degrade azo dyes for multiple times without loss of degradation efficiency.This work provides an efficient strategy to degrade synthetic dyes,and we expect that COFs with designable structures may use as new photocatalysts for other important applications. 展开更多
关键词 Covalent organic frameworks DYES Photocatalytic degradation Porous polymer Water pollution
下载PDF
Design of metal-organic frameworks(MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants 被引量:5
4
作者 Xiaoxue Zhao Jinze Li +2 位作者 Xin Li Pengwei Huo Weidong Shi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第6期872-903,共32页
Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of str... Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed. 展开更多
关键词 DESIGN Metal organic framework Photocatalytic performance degradation of organic pollutants CO_(2)reduction H_(2)production
下载PDF
Peroxymonosulfate activation by Mn_3O_4/metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B 被引量:23
5
作者 Longxing Hu Guihua Deng +2 位作者 Wencong Lu Yongsheng Lu Yuyao Zhang 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第8期1360-1372,共13页
An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characteri... An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron microscopy,and Fourier‐transform infrared spectroscopy.After characterization,the MOF was used to activate peroxymonosulfate(PMS)for degradation of the refractory pollutant rhodamine B(RhB)in water.The composite prepared at a0.5:1mass ratio of Mn3O4to ZIF‐8possessed the highest catalytic activity with negligible Mn leaching.The maximum RhB degradation of approximately98%was achieved at0.4g/L0.5‐Mn/ZIF‐120,0.3g/L PMS,and10mg/L initial RhB concentration at a reaction temperature of23°C.The RhB degradation followed first‐order kinetics and was accelerated with increased0.5‐Mn/ZIF‐120and PMS dosages,decreased initial RhB concentration,and increased reaction temperature.Moreover,quenching tests indicated that?OH was the predominant radical involved in the RhB degradation;the?OH mainly originated from SO4??and,hence,PMS.Mn3O4/ZIF‐8also displayed good reusability for RhB degradation in the presence of PMS over five runs,with a RhB degradation efficiency of more than96%and Mn leaching of less than5%for each run.Based on these findings,a RhB degradation mechanism was proposed. 展开更多
关键词 Peroxymonosulfate activation Refractory organic pollutant degradation Metal‐organic framework Mn3O4/ZIF‐8
下载PDF
Synergistic effect of CuO coupled with MoS_(2) for enhanced photodegradation of organic dyes under visible light
6
作者 Umsalama Abuelgasim Abubakr Yasin Zhixin Jia +3 位作者 Ziwen Qin Tianyu Guo Ruihua Zhao Jianping Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期96-105,共10页
A series of MoS_(2)-modified CuO(CuO/MoS_(2))heterostructures were successfully fabricated.The photodegradation properties of organic dyes were explored in detail under visible light.The photocatalytic results demonst... A series of MoS_(2)-modified CuO(CuO/MoS_(2))heterostructures were successfully fabricated.The photodegradation properties of organic dyes were explored in detail under visible light.The photocatalytic results demonstrate that the CuO/MoS_(2)-3 heterostructure delivers superior degradation rates towards methyl violet dye(MV)and rhodamine B(RhB),reaching 99.8%and 95.3%within 30 min,respectively.The decent photodegradation activity is due to improved visible light adsorption and faster transfer of electron-hole pairs.The radical trapping experiments show that superoxide radicals(O_(2)^(-))and holes(h+)are the main active species in the removal of MV.Furthermore,the CuO/MoS_(2)-3 composite possesses the prominent stability and recyclability.This work offers a highly sustainable technique for designing a high-efficiency photocatalyst to remove environmental pollutants. 展开更多
关键词 CuO/MoS_(2) HETEROSTRUCTURE organic pollutants Photocatalytic degradation
下载PDF
Photocatalytic Cr(Ⅵ) reduction and organic-pollutant degradation in a stable 2D coordination polymer 被引量:8
7
作者 Fu‐Xue Wang Xiao‐Hong Yi +1 位作者 Chong‐Chen Wang Ji‐Guang Deng 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期2141-2149,共9页
A new coordination polymer,Zn(bpy)L(BUC‐21),(H2L=cis‐1,3‐dibenzyl‐2‐imidazolidone‐4,5‐dicarboxylic acid,bpy=4,4′‐bipyridine),has been synthesized under hydrothermal conditions,and characterized by single‐cry... A new coordination polymer,Zn(bpy)L(BUC‐21),(H2L=cis‐1,3‐dibenzyl‐2‐imidazolidone‐4,5‐dicarboxylic acid,bpy=4,4′‐bipyridine),has been synthesized under hydrothermal conditions,and characterized by single‐crystal X‐ray analysis,Fourier transform infrared spectroscopy,thermogravimetric analyses,CNH elemental analysis and UV‐Vis diffuse reflectance spectroscopy.BUC‐21exhibited an excellent performance for photocatalytic Cr(VI)reduction with a conversion efficiency of96%,better than that of commercial P25(39%),under UV light irradiation for30min.BUC‐21could also be used to conduct photocatalytic degradation of organic dyes including methylene blue,rhodamine B,methyl orange and reactive red X‐3B.Also,the photocatalytic activity of BUC‐21remained high across a wide pH range from2.0to12.0.It is interesting to note,however,that BUC‐21was unable to achieve simultaneous reduction of Cr(VI)and degradation of an organic pollutant in a mixed matrix,which can be attributed to the competition between Cr(VI)and the organic dyes for access to the photo‐excited electrons. 展开更多
关键词 PHOTOCATALYSIS Cr(VI) reduction organic dyes Coordination polymers degradation
下载PDF
Sources and degradation of organic matter in the surface sediments of the Chukchi Sea:insights from amino acids
8
作者 Weiwei Li Zhongqiao Li +8 位作者 Zhuoyi Zhu Alexander Polukhin Youcheng Bai Yang Zhang Futao Fang Haiyan Jin Anatolii S.Astakhov Xuefa Shi Jianfang Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第11期9-18,共10页
In the context of global warming and rapid environment change in the Arctic,the supply of organic matter(OM)has increased significantly and a large amount of OM are buried on the Arctic shelf.Studying the fate of OM i... In the context of global warming and rapid environment change in the Arctic,the supply of organic matter(OM)has increased significantly and a large amount of OM are buried on the Arctic shelf.Studying the fate of OM in Arctic shelf sediments is crucial to understanding the global carbon sink.As a marginal sea of the Arctic Ocean,the Chukchi Sea is one of the most critical areas where OM is buried.Based on the surface sediment samples collected during the sixth Chinese National Arctic Research Expedition in the summer of 2014 and the SinoRussian joint Arctic Research Expedition in the summer of 2016,this study takes amino acids(AAs)as the primary tool to explore the source and degradation of OM in the surface sediments of the Chukchi Sea.This study shows that total hydrolyzable amino acid(THAA)concentrations(dry weight)are high,with a mean value of(32.7±15.8)μmol/g.Their spatial distribution is related to primary productivity,hydrodynamic conditions,sediment properties and other factors.The source of OM in the surface sediments of the Chukchi Sea is dominated by diatom-dominated marine productivity,with some input from terrestrial sources.Bacteria,as the main source of the D-enantiomer of AA(D-AA),not only have transforming effect on OM,but their cell walls and remnants likewise supply the OM pool.Based on a series of diagenetic indicators,we conclude that the OM in the surface sediments of the Chukchi Sea has undergone extensive degradation[DI(degradation index)=-0.59±0.44],and the degradation degree in the slope is higher than that in the shelf.This study uses AA to explore the sources and degradation of OM in the sediments of the Chukchi Sea,which facilitates our understanding of OM transport and transformation on the Arctic shelf. 展开更多
关键词 Chukchi Sea amino acids degradation indicator organic matter
下载PDF
Modified g-C_(3)N_(4) derived from ionic liquid and urea for promoting visible-light photodegradation of organic pollutants 被引量:3
9
作者 Hongbing Song Lei Liu +6 位作者 Bingxiao Feng Haozhong Wang Meng Xiao Hengjun Gai Yubao Tang Xiaofei Qu Tingting Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期293-303,共11页
In this work,modified g-C_(3)N_(4) was fabricated successfully by calcination of ionic liquid(IL) and urea.The addition of IL changed the polymerization mode of urea,induced the self-assembly of urea molecules,modifie... In this work,modified g-C_(3)N_(4) was fabricated successfully by calcination of ionic liquid(IL) and urea.The addition of IL changed the polymerization mode of urea,induced the self-assembly of urea molecules,modified the morphological structure of the tightly packed g-C_(3)N_(4),and extended the electron conjugation system.When using 1-butyl-3-methylimidazolium chloride([Bmim]Cl) as a modifier,the heteroatom Cl could be inserted into the g-C_(3)N_(4) to optimize the electronic structure.The results of characterizations indicate that the unique structure of modified g-C_(3)N_(4) has an expanded electron delocalization range,introduces an interlayer charge transmission channel,promotes the charge transmission,reduces the band gap,enhances the absorption of visible light,and inhibits electron-hole recombination.Modified g-C_(3)N_(4) showed excellent photocatalytic performance for the degradation of rhodamine B and tetracycline.Furthermore,the effect of different anions in 1-butyl-3-methylimidazolium salts([Bmim]Cl,[Bmim]Br,[Bmim][BF_(4)],and [Bmim][PF_6]) on the structure and function of g-C_(3) N_(4) are discussed. 展开更多
关键词 Graphite carbon nitride Ionic liquid PHOTOCATALYSTS Element doping organic pollutants
下载PDF
Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst
10
作者 Piyawan Nuengmatcha Arnannit Kuyyogsuy +3 位作者 Paweena Porrawatkul Rungnapa Pimsen Saksit Chanthai Prawit Nuengmatcha 《Water Science and Engineering》 EI CAS CSCD 2023年第3期243-251,共9页
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photosta... In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants. 展开更多
关键词 Magnetic zinc oxide/graphene/iron oxide PHOTOCATALYSIS Dye pollutants CATALYST degradation
下载PDF
Dual-functional MnS_(2)/MnO_(2) heterostructure catalyst for efficient acidic hydrogen evolution reaction and assisted degradation of organic wastewater
11
作者 Wen Kang Zhao Zi Qiang Ma +6 位作者 Jia Yu Zheng Chang Bao Han Kai Ling Zhou Ming Yang Hao De Cai Fang Yi Xia Hui Yan 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期215-224,I0007,共11页
The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC h... The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC heterostructure dual-functional catalysts with ultrathin nanosheets were prepared by a twostep electrodeposition method for efficient acidic hydrogen evolution reaction(HER) and degradation of organic wastewater(such as methylene blue(MB)).The electronic structure of Mn atoms at the MnS_(2)/MnO_(2)-CC heterostructure interface is reconfigured under the joint action of S and O atoms.Theoretical calculations show that the Mn d-band electron distribution in MnS_(2)/MnO_(2)-CC catalyst has higher occupied states near the Fermi level compared to the MnO_(2) and MnS_(2) catalysts,which indicates that MnS_(2)/MnO_(2)-CC catalyst has better electron transfer capability and catalytic activity.The MnS_(2)/MnO_(2)-CC catalysts require overpotential of only 66 and 116 mV to reach current density of 10 and 100 mA cm^(-2)in MB/H_(2)SO_(4) media.The MnS_(2)/MnO_(2)-CC catalyst also has a low Tafel slope(26.72 mV dec^(-1)) and excellent stability(the performance does not decay after 20 h of testing).In addition,the MB removal efficiency of the MnS_(2)/MnO_(2)-CC catalyst with a better kinetic rate(0.0226) can reach 97.76%,which is much higher than that of the MnO_(x)-CC catalyst(72.10%).This strategy provides a new way to develop efficient and stable non-precious metal dual-functional electrocatalysts for HER and organic wastewater degradation. 展开更多
关键词 Hydrogen evolution reaction(HER) Dual-functional electrocatalysts HETEROSTRUCTURE Catalytic activity degradation of organic wastewater
下载PDF
Role of oxygen vacancies and Sr sites in SrCo_(0.8)Fe_(0.2)O_3 perovskite on efficient activation of peroxymonosulfate towards the degradation of aqueous organic pollutants 被引量:2
12
作者 Li Yang Yong Jiao +2 位作者 Dongyan Jia Yanzhi Li Chuanhua Liao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期269-277,共9页
Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially des... Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially designed a perovskite oxide with abundant oxygen vacancies,SrCo_(0.8)Fe_(0.2)O_(3)(SCF),and firstly applied it as a catalyst in peroxymonosulfate(PMS) activation towards organic pollutants degradation.The result revealed that the prepared SCF catalyst exhibited excellent performance on organic compounds degradation.Besides,SCF showed much better activity than La_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3)(LSCF) in terms of reaction rate and stability for the degradation of the organic compounds.Based on the analysis of scanning electron microscope,transmission electron microscope,X-ray diffraction,N_(2) adsorption-desorption,X-ray photoelectron spectroscopy and electron paramagnetic resonance,it was confirmed that the perovskite catalysts with high content of Sr doping at A-site could effectively create a defect-rich surface and optimize its physicochemical properties,which was responsible for the excellent heterogeneous catalytic activity of SCF.SCF can generate three highly active species:~1 O_(2),SO_(4)^(-)· and ·OH in PMS activation,revealing the degradation process of organic compounds was a coupled multiple active species in both radical and nonradical pathway.Moreover,it was mainly in a radical pathway in the degradation through PMS activation on SCF and SO_(4)^(-)· radicals produced were the dominant species in SCF/PMS system.This study demonstrated that perovskite-type catalysts could enrich OVs efficiently by doping strategy and regulate the PMS activation towards sulfate radical-based AOPs. 展开更多
关键词 PEROVSKITE CATALYSIS Activation of peroxymonosulfate Active oxygen species degradation of organic compounds
下载PDF
Effects of extra-cellular polymeric substances on organic pollutants biodegradation kinetics for A-step of adsorption-biodegradation process 被引量:1
13
作者 周健 吴志高 姜文超 《Journal of Central South University of Technology》 EI 2006年第3期229-233,共5页
The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric ... The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric substances(EPS) with bioflocculation and introducing kinetic model of organic pollutant degradation into EPS, the kinetic model of organic pollutant degradation for step-A hioflocculation was deducted. And through the experiments, the kinetic constants were calculated as follows: k1 =0. 005 3; kc1 =1 710.7 and vmax1=10 min^-1. 展开更多
关键词 AB process organic pollutants biodegradation KINETICS EPS
下载PDF
Photocatalytic degradation of methylene blue over MIL-100(Fe)/GO composites: a performance and kinetic study
14
作者 Yuxue Wei Zhiyuan Fu +6 位作者 Yingzi Meng Chun Li Fu Yin Xue Wang Chenghua Zhang Lisheng Guo Song Sun 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期208-222,共15页
Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adso... Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment. 展开更多
关键词 Graphene oxide Metal organic frameworks Methylene blue ADSORPTION Photocatalytic degradation
下载PDF
Persistence of fertilization effects on soil organic carbon in degraded alpine wetlands in the Yellow River source region
15
作者 DUAN Peng WEI Rongyi +7 位作者 WANG Fangping LI Yongxiao SONG Ci HU Bixia YANG Ping ZHOU Huakun YAO Buqing ZHAO Zhizhong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1358-1371,共14页
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta... In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content. 展开更多
关键词 Degraded alpine wetlands FERTILIZER Soil organic carbon Temporal variation Vegetation aboveground biomass Yellow River source region
下载PDF
STUDY ON DEGRADATION OF LDPE CATALYZED BY MULTI-VALENCE METALLIC ORGANIC COMPOUNDS AT COMPOST TEMPERATURE
16
作者 于九皋 陈崧哲 《Transactions of Tianjin University》 EI CAS 2001年第4期290-293,共4页
The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost... The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost environment.The mechanical properties,viscosity average molecular weight (M η) of PE and hydroperoxide (POOH) concentration in the samples were measured.FT IR and DSC were also applied to characterize some samples.It was shown that the above mentioned metallic organic compounds can catalyze the degradation of LDPE efficiently.After 2 months aging,all samples with catalysts became fragile and the M η of the material decreased dramatically.Furthermore,the concentration of carbonyl and the degree of crystallinity of the material increased with the aging time. 展开更多
关键词 polyethylene multi valence metallic organic compound COMPOST degradation HYDROPEROXIDE
下载PDF
Uptake and translocation of organic pollutants in plants:A review 被引量:9
17
作者 ZHANG Cheng FENG Yao +3 位作者 LIU Yuan-wang CHANG Hui-qing LI Zhao-jun XUE Jian-ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第8期1659-1668,共10页
Organic pollutants, such as polychlorinated dJbenzo-p-dioxins and polychlofinated dibenzofurans (PCDD/Fs), polychlodnated biphenyls (PCBs), antibiotics, herbicides, and bisphenol A (BPA), are commonly found in a... Organic pollutants, such as polychlorinated dJbenzo-p-dioxins and polychlofinated dibenzofurans (PCDD/Fs), polychlodnated biphenyls (PCBs), antibiotics, herbicides, and bisphenol A (BPA), are commonly found in agricultural environments. They are released into the environment as a result of their use for human health purposes and farm management activities, and are often discharged as waste-water effluents. Most of these organic pollutants are taken up by plants through roots and leaves, and when they enter the tissue, they cause serious damage to the plants. Although the toxicity of organic pollutants to plants, especially to plant cells, has been intensively studied, a systematic review of these studies is lacking. Here we review researches on the toxicity of organic pollutants, their uptake, and translocation in plants. Our objective is to assemble existing knowledge concerning the interaction of organic pollutants with plants, which should be useful for the development of plant-based systems for removing pollutants from aquatic and agricultural environments. 展开更多
关键词 organic pollutants PLANT UPTAKE CYTOTOXICITY
下载PDF
N-doping offering higher photodegradation performance of dissolved black carbon for organic pollutants: experimental and theoretical studies
18
作者 Yong GUO Mengxia CHEN +5 位作者 Ting CHEN Ying GUO Zixuan XU Guowei XU Soukthakhane SINSONESACK Keophoungeun KANMANY 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第4期340-356,共17页
We investigated the influence mechanism of N-doping for dissolved black carbon(DBC)photodegradation of organic pollutants.The degradation performance of N-doped dissolved black carbon(NDBC)for tetracycline(TC)(71%)is ... We investigated the influence mechanism of N-doping for dissolved black carbon(DBC)photodegradation of organic pollutants.The degradation performance of N-doped dissolved black carbon(NDBC)for tetracycline(TC)(71%)is better than that for methylene blue(MB)(28%)under irradiation.These levels are both better than DBC degradation performances for TC(68%)and MB(18%)under irradiation.Reactive species quenching experiments suggest that h and-O,are the main reactive species for NDBC photodegraded TC,while-OH and h*are the main reactive species for NDBC photodegraded MB.-OH is not observed during DBC photodegradation of MB.This is likely because N-doping increases valence-band(VB)energy from 1.55 eV in DBC to 2.04 eV in NDBC;the latter is strong enough to oxidize water to form-OH.Additionally,N-doping increases the DBC band gap of 2.29 to 2.62 eV in NDBC,resulting in a higher separation efficiency of photo-generated electrons-holes in NDBC than in DBC.AIl these factors give NDBC stronger photodegradation performance for TC and MB than DBC.High-performance liquid chromatography-mass spectrometry(HPLC-MS)characterization and toxicity evaluation with the quantitative structure-activity relationship(QSAR)method suggest that TC photodegradation intermediates produced by NDBC have less aromatic structure and are less toxic than those produced by DBC.We adopted a theoretical approach to clarify the relationship between the surface groups of NDBC and the photoactive species produced.Our results add to the understanding of the photochemical behavior of NDBC. 展开更多
关键词 Dissolved black carbon(DBC) N-DOPING organic pollutants Band gap PHOTOdegradation
原文传递
Terpyridine-based metallo-cuboctahedron nanomaterials for efficient photocatalytic degradation of persistent organic pollutants
19
作者 Qixia Bai Yan Huang +11 位作者 Zhihong Chen Yilin Pan Xiaohan Zhang Qingwu Long Qiaoan Yang Tun Wu Ting-Zheng Xie Mingjian Wang Hongguang Luo Chun Hu Pingshan Wang Zhe Zhang 《Nano Research》 SCIE EI CSCD 2024年第8期6833-6840,共8页
Metal–organic cage photocatalysts with nanoscale dimensions have received wide attention in the field of photocatalytic environmental pollutant treatment due to their large cavities,easy modification,high tunability,... Metal–organic cage photocatalysts with nanoscale dimensions have received wide attention in the field of photocatalytic environmental pollutant treatment due to their large cavities,easy modification,high tunability,and enriched active sites.Herein,we prepared a series of dihydroanthracene-cored terpyridine-based metallo-cuboctahedron nanomaterials through a selfassembly method,which exhibited satisfactory degradation performance for persistent organic pollutants under visible light irradiation.In particular,under light conditions,S1-Zn,one of the prepared nanomaterials,produced photogenerated holes oxidizing water molecules to∙OH,which attacked ibuprofen(IBU)for up to 95% degradation.Simultaneously,the corresponding photogenerated electrons reduced the dissolved oxygen in water,producing 66.2μmol/L hydrogen peroxide.The obtained supramolecular photocatalytic materials have a stable structure with non-precious metals and do not require a sacrificial agent.The metal sites of metallo-cuboctahedrons adsorb pollutants and transfer captured holes to them,accelerating degradation and promoting simultaneous H_(2)O_(2) production.This work not only proposes a simple and efficient synthesis method for supramolecular photocatalysts but also opens up opportunities for efficient,low-cost,and multifunctional materials for environmental persistent organic pollutants treatment. 展开更多
关键词 supramolecular cages SELF-ASSEMBLY photocatalytic pollutant degradation H2O2 production
原文传递
Removal of Nitrogen, Phosphorus, and Organic Pollutants From Water Using Seeding Type Immobilized Microorganisms 被引量:6
20
作者 LIN WANG LI-JING HUANG LUO-JIA YUN FEI TANG JING-HUI ZHAO YAN-QUN LIU XIN ZENG QI-FANG LUO 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第2期150-156,共7页
Objective To study the possibility of removing nitrogen, phosphorus, and organic pollutants using seeding type immobilized microorganisms. Methods Lakes P and M in Wuhan were chosen as the objects to study the removal... Objective To study the possibility of removing nitrogen, phosphorus, and organic pollutants using seeding type immobilized microorganisms. Methods Lakes P and M in Wuhan were chosen as the objects to study the removal of nitrogen, phosphorus, and organic pollutants with the seeding type immobilized microorganisms. Correlations between the quantity of heterotrophic bacteria and the total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in the two lakes were studied. The dominant bacteria were detected, inoculated to the sludge and acclimated by increasing nitrogen, phosphorus and decreasing carbon source in an intermittent, time-controlled and fixed-quantity way. The bacteria were then used to prepare the seeding type immobilized microorganisms, selecting diatomite as the adsorbent cartier. The ability and influence factors of removing nitrogen, phosphorus, and organic pollutant from water samples by the seeding type immobilized microorganisms were studied. Results The coefficients of the heterotrophic bacterial quantity correlated with TOC, TP, and TN were 0.9143, 0.8229, 0.7954 in Lake P and 0.9168, 0.7187, 0.6022 in Lake M. Ten strains of dominant heterotrophic bacteria belonging to Pseudomonas, Coccus, Aeromonas, Bacillus, and Enterobateriaceae, separately, were isolated. The appropriate conditions for the seeding type immobilized microorgansims in purifying the water sample were exposure time=24 h, pH=7.0-8.0, and quantity of the immobilized microorganisms=0.75-1g/50 mL. The removal rates of TOC, TP, and TN under the above conditions were 80.2%, 81.6%, and 86.8%, respectively. Conclusion The amount of heterotrophic bacteria in the two lakes was correlated with TOC, TP, and TN. These bacteria could be acclimatized and prepared for the immobilized microorganisms which could effectively remove nitrogen, phosphorus, and mixed organic pollutants in the water sample. 展开更多
关键词 Heterotrophic bacteria ACCLIMATION Immobilized microorganisms NITROGEN PHOSPHORUS Mixed organic pollutants
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部