期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Piperazine-Assisted Construction of 2D/3D Wide-Bandgap Perovskite for Realizing High-Efficiency Perovskite/Organic Tandem Solar Cells
1
作者 Ziyue Wang Shuaiqing Kang +8 位作者 Xia Zhou Haiyang Chen Xingxing Jiang Zhichao Zhang Jialei Zheng Ruopeng Zhang Weijie Chen Jiandong Zhang Yaowen Li 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第16期1819-1827,共9页
Monolithic perovskite/organic tandem solar cells(TsCs)have gained significant attention due to their easy device integration and the potential to surpass the Shockley-Queisser limit of single-junction solar cells.Howe... Monolithic perovskite/organic tandem solar cells(TsCs)have gained significant attention due to their easy device integration and the potential to surpass the Shockley-Queisser limit of single-junction solar cells.However,the surfaces of wide-bandgap perovskite films are densely populated with defects,leading to severe non-radiative recombination and energy loss.As a consequence,the power conversion efficiency(PCE)of perovskite/organic TSCs lags behind that of other TSC counterparts.To address these issues,we designed a functional ammonium salt,4-(2-hydroxyethyl)piperazin-1-ium iodide(Pzol),comprising a piperazine iodide and a terminated hydroxyl group,which was applied for post-treating the perovskite surface.Our findings reveal that Pzol reacts with and consumes residual PbX_(2)(X:I or Br)to form a 2D perovskite component,thereby eliminating Pb^(0)defects,while the terminated hydroxyl group in PZOI can also passivate uncoordinated Pb^(2+).Consequently,the shallow/deep-level defect densities of the 2D/3D perovskite film were significantly reduced,leading to an enhanced PCE of single-junction 2D/3D wide-bandgap perovskite solar cells to 18.18% with a reduced energy loss of 40 mev.Importantly,the corresponding perovskite/organic TSCs achieved a remarkable PCE of 24.05% with enhanced operational stability(T_(90)~500h). 展开更多
关键词 Perovskite/organic tandem solar cell Defect states Piperazine ion salt Energy conversion low-dimensional materials Perovskitesolar cells 2D/3D perovskites Efficiency
原文传递
Frontiers in circularly polarized luminescence:molecular design,self-assembly,nanomaterials,and applications 被引量:7
2
作者 Zhong-Liang Gong Xuefeng Zhu +16 位作者 Zhonghao Zhou Si-Wei Zhang Dong Yang Biao Zhao Yi-Pin Zhang Jianping Deng Yixiang Cheng You-Xuan Zheng Shuang-Quan Zang Hua Kuang Pengfei Duan Mingjian Yuan Chuan-Feng Chen Yong Sheng Zhao Yu-Wu Zhong Ben Zhong Tang Minghua Liu 《Science China Chemistry》 SCIE EI CSCD 2021年第12期2060-2104,共45页
The research in circularly polarized luminescence has attracted wide interest in recent years.Efforts on one side are directed toward the development of chiral materials with both high luminescence efficiency and diss... The research in circularly polarized luminescence has attracted wide interest in recent years.Efforts on one side are directed toward the development of chiral materials with both high luminescence efficiency and dissymmetry factors,and on the other side,are focused on the exploitations of these materials in optoelectronic applications.This review summarizes the recent frontiers(mostly within five years)in the research in circularly polarized luminescence,including the development of chiral emissive materials based on organic small molecules,compounds with aggregation-induced emissions,supramolecular assemblies,liquid crystals and liquids,polymers,metal-ligand coordination complexes and assemblies,metal clusters,inorganic nanomaterials,and photon upconversion systems.In addition,recent applications of related materials in organic light-emitting devices,circularly polarized light detectors,and organic lasers and displays are also discussed. 展开更多
关键词 circularly polarized luminescence PHOTOCHEMISTRY PHOTOPHYSICS aggregation-induced emission self-assembly NANOmaterials nanostructures chiral materials CHIRALITY organic light-emitting devices photodetectors organic lasers
原文传递
Assembly Induced Super-Large Red-Shifted Absorption:The Burgeoning Field of Organic Near-Infrared Materials 被引量:4
3
作者 Luyang Zhao Xiaokang Ren Xuehai Yan 《CCS Chemistry》 CAS 2021年第5期678-693,共16页
Supramolecular assembly of organic dye compounds with J-aggregation leads to a red-shifted absorption spectrum that greatly facilitates the construction of near-infrared(NIR)materials.A considerable improvement of the... Supramolecular assembly of organic dye compounds with J-aggregation leads to a red-shifted absorption spectrum that greatly facilitates the construction of near-infrared(NIR)materials.A considerable improvement of the material functions requires that the absorption red-shift be larger than 100 nm,but such a super-large red-shift is challenging,and the rules leading to the super-large red-shifted absorption is still not explicit.In this review,we focused on those J-aggregated organic dye materials with super-large red-shifted absorption.The nature of the super-large red-shift is originated fromthe intermolecular charge transfer between neighboring chromophores.The super-large red-shift can be obtained by tuning either the molecular structure or kinetic assembly process in a delicate manner.Materials with super-large red-shifted absorption have been successfully applied to biological imaging,phototherapy,electronic devices,and solar cells,and show great potential in many other fields.The elaboration of assembly induced super-large red-shifted absorption is promising for design of supramolecular NIR materials with tuned structures,enhanced functionalities,and a wide array of applications. 展开更多
关键词 super-large red-shifted absorption intermolecular charge transfer supramolecular assembly kinetic self-assembly organic near-infrared materials
原文传递
Viologen derivatives with extendedπ-conjugation structures:From supra-/molecular building blocks to organic porous materials 被引量:1
4
作者 Xiao-He Zhou Yu Fan +8 位作者 Wan-Xia Li Xiang Zhang Rong-Ran Liang Feng Lin Tian-Guang Zhan Jiecheng Cui Li-Juan Liu Xin Zhao Kang-Da Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第7期1757-1767,共11页
Recently,increasing atte ntion has been paid on extending theπ-conjugation structures ofviologens(1,1’-disubstituted-4,4’-bipyridylium salts)by incorporating planar aromatic units into the bipyridinium backbones.Va... Recently,increasing atte ntion has been paid on extending theπ-conjugation structures ofviologens(1,1’-disubstituted-4,4’-bipyridylium salts)by incorporating planar aromatic units into the bipyridinium backbones.Various viologen derivative s with extendedπ-conjugation structures have been synthesized,including the N-termini aromatic substituted viologens,the extendedπ-conjugated viologens(denoted as ECVs)as well as theπ-conjugated oligomeric viologens(denoted as COVs).These compounds typically exhibit interesting properties distinguished from those of an isolated viologen unit,which make them as new class of electron deficient supra-/molecular building blocks in supramolecular chemistry and materials science.In this review,we would like to highlight the recent advances of viologen derivatives with extendedπ-conjugation structures in versatile applications ranging from electrochromic and energy storage materials,the ECV/COV-based supramolecular self-assembly systems including the linear supramolecular polymers and 2D/3D supramolecular organic frameworks(SOFs),to the viologen-based covalent organic frameworks(COFs)/networks.We hope this review will serve as an in-time summary worthy of referring,more importantly,to provide inspiration in the rational design of novel molecules with unexplored properties and functions. 展开更多
关键词 π-Conjugated viologens self-assembly Supramolecular polymers Supramolecular organic frameworks Ionic organic porous materials
原文传递
Smart phosphorescence from solid to water through progressive assembly strategy based on dual phosphorescent sources
5
作者 Qing-Qing Xia Xing-Huo Wang +5 位作者 Jia-Lin Yu Zhong-Yuan Chen Xin-Yue Lou Xiaomin Liu Ming-Xue Wu Ying-Wei Yang 《Aggregate》 2023年第5期224-234,共11页
Developing smart room-temperature phosphorescence(RTP)materials with facile and efficient strategies have attracted increasing attention.Herein,tunable RTP materials with two phosphorescent sources and stepwise enhanc... Developing smart room-temperature phosphorescence(RTP)materials with facile and efficient strategies have attracted increasing attention.Herein,tunable RTP materials with two phosphorescent sources and stepwise enhanced phosphorescence in water are obtained through an in-situ self-assembly strategy based on the sensitization of phosphors by trimesic acid(TMA)through simple doping and the rigidification of phosphors by hydrogen-bonded organic frameworks(HOFs).As expected,doped TMA+phosphors simultaneously promote the RTP emission of phosphors and maintain TMA phosphorescence.In-situ assembled HOF(MATMA)@phosphors facilitate smart RTP emission in water due to the coexistence of phosphorescent HOF(MA-TMA)host and phosphors guest.Additionally,such RTP materials with good processability demonstrate the application potential in information security,benefitting from their varied afterglow lifetimes and easy luminous recognition in the darkness.This work will inspire the design of dual phosphorescent source RTP systems and provide new strategies for the development of smart RTP materials in water. 展开更多
关键词 emissive materials hydrogen-bonded organic frameworks luminescence display room-temperature phosphorescence self-assembly
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部