We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2 ) films on SrTiO3 (001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski-...We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2 ) films on SrTiO3 (001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski-Krastanov (layer-plus-island) mode with a preferential orientation of (111). Our careful inspection of both the as-grown and post-annealed CuSe2 films at various temperatures invariably shows a Cu-terminated surface, which, depending on the annealing temperature, reconstructs into two distinct structures 2 ×√3 and √x ×√3-R30°. The Cu termi- nation is supported by the depressed density of states near the Fermi level, measured by in-situ low temperature scanning tunneling spectroscopy. Our study helps understand the preparation and surface chemistry of transition metal pyrite dichalcogenides thin films.展开更多
The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with ...The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with the GaSb(100)substrates.The thickness of the GaSb_(1-x)Bi_(x) layers of the samples are 5 and 10 nm,respectively.For comparison,the GaSb buffer was also characterized and its STM image displays terraces whose surfaces are basically atomically flat and their roughness is generally less than 1 monolayer(ML).The surface of 5 nm GaSb_(1-x)Bi_(x) film reserves the same terraced morphology as the buffer layer.In contrast,the morphology of the 10 nm GaSb_(1-x)Bi_(x) film changes to the mound-like island structures with a height of a few MLs.The result implies the growth mode transition from the two-dimensional mode as displayed by the 5 nm film to the Stranski-Krastinov mode as displayed by the 10 nm film.The statistical analysis with the scanning tunneling spectroscopy(STS)measurements indicates that both the incorporation and the inhomogeneity of Bi atoms increase with the thickness of the GaSb_(1-x)Bi_(x) layer.展开更多
The epitaxial growth of Ge on Si(111) covered with the 0.3 nm thick SiO2 film is studied by scanning tunneling microscopy. Nanoareas of bare Si in the SiO2 film are prepared by Ge deposition at a temperature in the ra...The epitaxial growth of Ge on Si(111) covered with the 0.3 nm thick SiO2 film is studied by scanning tunneling microscopy. Nanoareas of bare Si in the SiO2 film are prepared by Ge deposition at a temperature in the range of 570℃-650℃ due to the formation of volatile SiO and GeO molecules. The surface morphology of Ge layers grown further at 360℃-500℃ is composed of facets and large flat areas with the Ge(111)-c(2 × 8) reconstruction which is typical of unstrained Ge. Orientations of the facets, which depend on the growth temperature, are identified. The growth at 250℃-300℃ produces continuous epitaxial Ge layers on Si(111). A comparison of the surface morphology of Ge layers grown on bare and SiO2-film covered Si(111) surfaces shows a significantly lower Ge-Si intermixing in the latter case due to a reduction in the lattice strain. The found approach to reduce the strain suggests the opportunity of the thin continuous epitaxial Ge layer formation on Si(111).展开更多
The growth of Mn5Ge3 ultrathin films with different thicknesses, prepared by solid phase epitaxy, is studied. The results of scanning tunnelling microscopy and low energy electron diffraction studies show that the fil...The growth of Mn5Ge3 ultrathin films with different thicknesses, prepared by solid phase epitaxy, is studied. The results of scanning tunnelling microscopy and low energy electron diffraction studies show that the film can be formed and it is terminated with a (√3 × √3) R30° surface reconstruction when the thickness of Mn exceeds 3 monolayers. The magnetic properties show that the Curie temperature is about 300 K and the T^2-dependent behaviour is observed to remain up to 220 K.展开更多
Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silic...Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silicene and√ silice√ne–graphene layered structures on Ir(111) substrates. For silicene on Ir(111), the buckled(3 ×3) silicene/(7 ×7)Ir(111) configuration and its electronic structure are fully discussed. For silicene–graphene layered structures, silicene layer can be constructed underneath graphene layer by an intercalation method. These results indicate the possibility of integrating silicene with graphene and may link up with potential applications in nanoelectronics and related areas.展开更多
An investigation on the growth behavior of FePc on a Ag (110) surface is carried out by using scanning tunneling microscopy (STM). At an FePc coverage of 3.5 ML, an ordered superstructure (densely packed) with a...An investigation on the growth behavior of FePc on a Ag (110) surface is carried out by using scanning tunneling microscopy (STM). At an FePc coverage of 3.5 ML, an ordered superstructure (densely packed) with a lateral shift is observed. The densely packed superstructure can be attributed to the substrate commensuration and the intermolecular van der Waals attractive interaction. The in-plane lateral shift in the superphase is specifically along the direction of [110] azimuth. The results provide a new perspective to understanding the intermolecular and the molecule-substrate interactions.展开更多
The ultrathinβ-Sn(001)films have attracted tremendous attention owing to its topological superconductivity(TSC),which hosts Majorana bound state(MBSs)for quantum computation.Recently,β-Sn(001)thin films have been su...The ultrathinβ-Sn(001)films have attracted tremendous attention owing to its topological superconductivity(TSC),which hosts Majorana bound state(MBSs)for quantum computation.Recently,β-Sn(001)thin films have been successfully fabricated via phase transition engineering.However,the understanding of structural phase transition ofβ-Sn(001)thin films is still elusive.Here,we report the direct growth of ultrathinβ-Sn(001)films epitaxially on the highly oriented pyrolytic graphite(HOPG)substrate and the characterization of intricate structural-transition-induced superstructures.The morphology was obtained by using atomic force microscopy(AFM)and low-temperature scanning tunneling microscopy(STM),indicating a structure-related bilayer-by-bilayer growth mode.The ultrathinβ-Sn film was made of multiple domains with various superstructures.Both high-symmetric and distorted superstructures were observed in the atomic-resolution STM images of these domains.The formation mechanism of these superstructures was further discussed based on the structural phase transition ofβtoα-Sn at the atomic-scale thickness.Our work not only brings a deep understanding of the structural phase transition of Sn film at the two-dimensional limit,but also paves a way to investigate their structure-sensitive topological properties.展开更多
Transition-metal chalcogenides(TMCs)materials have attracted increasing interest both for fundamental research and industrial applications.Among all these materials,two-dimensional(2D)compounds with honeycomb-like str...Transition-metal chalcogenides(TMCs)materials have attracted increasing interest both for fundamental research and industrial applications.Among all these materials,two-dimensional(2D)compounds with honeycomb-like structure possess exotic electronic structures.Here,we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111)and annealing.Few intrinsic defects are observed and studied by scanning tunneling microscopy,indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary.Then,the monolayer AgTe can serve as the template for the following growth of Te film.Meanwhile,some Te atoms are observed in the form of chains on the top of the bottom Te film.Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.展开更多
Recent experimental breakthroughs open up new opportunities for magnetism in few-atomic-layer twodimensional(2 D) materials, which makes fabrication of new magnetic 2 D materials a fascinating issue.Here, we report th...Recent experimental breakthroughs open up new opportunities for magnetism in few-atomic-layer twodimensional(2 D) materials, which makes fabrication of new magnetic 2 D materials a fascinating issue.Here, we report the growth of monolayer VSe_2 by molecular beam epitaxy(MBE) method. Electronic properties measurements by scanning tunneling spectroscopy(STS) method revealed that the asgrown monolayer VSe_2 has magnetic characteristic peaks in its electronic density of states and a lower work-function at its edges. Moreover, air exposure experiments show air-stability of the monolayer VSe_2. This high-quality monolayer VSe_2, a very air-inert 2 D material with magnetism and low edge work function, is promising for applications in developing next-generation low power-consumption, high efficiency spintronic devices and new electrocatalysts.展开更多
Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors.While the details remain elusive in many systems,this ...Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors.While the details remain elusive in many systems,this charge transfer has been inferred in a number of photoemission experiments.We present electronic transport measurements in very short channel(L<100 nm)transistors made from poly(3-hexylthiophene)(P3HT).As channel length is reduced,the evolution of the contact resistance and the zero gate voltage conductance are consistent with such charge transfer.Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts,consistent with charge transfer expectations.Alternating current scanning tunneling microscopy(ACSTM)provides further evidence that holes are transferred from Pt into P3HT,while much less charge transfer takes place at the Au/P3HT interface.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374336 and 61176078
文摘We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2 ) films on SrTiO3 (001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski-Krastanov (layer-plus-island) mode with a preferential orientation of (111). Our careful inspection of both the as-grown and post-annealed CuSe2 films at various temperatures invariably shows a Cu-terminated surface, which, depending on the annealing temperature, reconstructs into two distinct structures 2 ×√3 and √x ×√3-R30°. The Cu termi- nation is supported by the depressed density of states near the Fermi level, measured by in-situ low temperature scanning tunneling spectroscopy. Our study helps understand the preparation and surface chemistry of transition metal pyrite dichalcogenides thin films.
基金supported by the National Natural Science Foundation of China(Nos.61474073,61874069 and 61804157).
文摘The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with the GaSb(100)substrates.The thickness of the GaSb_(1-x)Bi_(x) layers of the samples are 5 and 10 nm,respectively.For comparison,the GaSb buffer was also characterized and its STM image displays terraces whose surfaces are basically atomically flat and their roughness is generally less than 1 monolayer(ML).The surface of 5 nm GaSb_(1-x)Bi_(x) film reserves the same terraced morphology as the buffer layer.In contrast,the morphology of the 10 nm GaSb_(1-x)Bi_(x) film changes to the mound-like island structures with a height of a few MLs.The result implies the growth mode transition from the two-dimensional mode as displayed by the 5 nm film to the Stranski-Krastinov mode as displayed by the 10 nm film.The statistical analysis with the scanning tunneling spectroscopy(STS)measurements indicates that both the incorporation and the inhomogeneity of Bi atoms increase with the thickness of the GaSb_(1-x)Bi_(x) layer.
文摘The epitaxial growth of Ge on Si(111) covered with the 0.3 nm thick SiO2 film is studied by scanning tunneling microscopy. Nanoareas of bare Si in the SiO2 film are prepared by Ge deposition at a temperature in the range of 570℃-650℃ due to the formation of volatile SiO and GeO molecules. The surface morphology of Ge layers grown further at 360℃-500℃ is composed of facets and large flat areas with the Ge(111)-c(2 × 8) reconstruction which is typical of unstrained Ge. Orientations of the facets, which depend on the growth temperature, are identified. The growth at 250℃-300℃ produces continuous epitaxial Ge layers on Si(111). A comparison of the surface morphology of Ge layers grown on bare and SiO2-film covered Si(111) surfaces shows a significantly lower Ge-Si intermixing in the latter case due to a reduction in the lattice strain. The found approach to reduce the strain suggests the opportunity of the thin continuous epitaxial Ge layer formation on Si(111).
文摘The growth of Mn5Ge3 ultrathin films with different thicknesses, prepared by solid phase epitaxy, is studied. The results of scanning tunnelling microscopy and low energy electron diffraction studies show that the film can be formed and it is terminated with a (√3 × √3) R30° surface reconstruction when the thickness of Mn exceeds 3 monolayers. The magnetic properties show that the Curie temperature is about 300 K and the T^2-dependent behaviour is observed to remain up to 220 K.
基金supported by the National Basic Research Program of China(Grant Nos.2013CBA01600 and 2011CB932700)the National Natural Science Foundation of China(Grant Nos.61222112,61390501,51325204,11334006,and 61306114)+1 种基金the Science Fund from Chinese Academy of Sciences(Grant Nos.1731300500015 and XDB07030100)the Fundamental Research Funds for the Central Universities,China
文摘Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silicene and√ silice√ne–graphene layered structures on Ir(111) substrates. For silicene on Ir(111), the buckled(3 ×3) silicene/(7 ×7)Ir(111) configuration and its electronic structure are fully discussed. For silicene–graphene layered structures, silicene layer can be constructed underneath graphene layer by an intercalation method. These results indicate the possibility of integrating silicene with graphene and may link up with potential applications in nanoelectronics and related areas.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60506019,10674118,and 10774129)the Chinese Universities Scientific Fund
文摘An investigation on the growth behavior of FePc on a Ag (110) surface is carried out by using scanning tunneling microscopy (STM). At an FePc coverage of 3.5 ML, an ordered superstructure (densely packed) with a lateral shift is observed. The densely packed superstructure can be attributed to the substrate commensuration and the intermolecular van der Waals attractive interaction. The in-plane lateral shift in the superphase is specifically along the direction of [110] azimuth. The results provide a new perspective to understanding the intermolecular and the molecule-substrate interactions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61674045,61911540074,and 21622304)the Fund from the Ministry of Science and Technology of China(Grant No.2016YFA0200700)+1 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences(Chinese Academy of Sciences)(Grant Nos.XDB30000000 and QYZDB-SSW-SYS031)Zhihai Cheng was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China(Grant No.21XNLG27).
文摘The ultrathinβ-Sn(001)films have attracted tremendous attention owing to its topological superconductivity(TSC),which hosts Majorana bound state(MBSs)for quantum computation.Recently,β-Sn(001)thin films have been successfully fabricated via phase transition engineering.However,the understanding of structural phase transition ofβ-Sn(001)thin films is still elusive.Here,we report the direct growth of ultrathinβ-Sn(001)films epitaxially on the highly oriented pyrolytic graphite(HOPG)substrate and the characterization of intricate structural-transition-induced superstructures.The morphology was obtained by using atomic force microscopy(AFM)and low-temperature scanning tunneling microscopy(STM),indicating a structure-related bilayer-by-bilayer growth mode.The ultrathinβ-Sn film was made of multiple domains with various superstructures.Both high-symmetric and distorted superstructures were observed in the atomic-resolution STM images of these domains.The formation mechanism of these superstructures was further discussed based on the structural phase transition ofβtoα-Sn at the atomic-scale thickness.Our work not only brings a deep understanding of the structural phase transition of Sn film at the two-dimensional limit,but also paves a way to investigate their structure-sensitive topological properties.
基金This project was supported by the Ministry of Science and Technology(MOST)of China(No.2016YFA0200700)the National Natural Science Foundation of China(NSFC)(Nos.61674045 and 61911540074)+2 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences(Chinese Academy of Sciences,CAS)(Nos.XDB30000000 and QYZDB-SSW-SYS031)Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science(JSPS)from the Ministry of Education,Culture,Sports,Science,and Technology of Japan(Nos.JP16H06327,JP16H06504,JP17H01061,and JP17H010610)Osaka University’s International Joint Research Promotion Program(Nos.J171013014,J171013007,J181013006,and Ja19990011).Z.H.C.was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China(No.21XNLG27).
文摘Transition-metal chalcogenides(TMCs)materials have attracted increasing interest both for fundamental research and industrial applications.Among all these materials,two-dimensional(2D)compounds with honeycomb-like structure possess exotic electronic structures.Here,we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111)and annealing.Few intrinsic defects are observed and studied by scanning tunneling microscopy,indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary.Then,the monolayer AgTe can serve as the template for the following growth of Te film.Meanwhile,some Te atoms are observed in the form of chains on the top of the bottom Te film.Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.
基金supported by the National Natural Science Foundation of China(61725107,51572290 and 11334006)National Key Research&Development Projects of China(2016YFA0202301)+1 种基金National Basic Research Program of China(2013CBA01601)Strategic Priority Research Program(B)of Chinese Academy of Sciences(XDPB06)
文摘Recent experimental breakthroughs open up new opportunities for magnetism in few-atomic-layer twodimensional(2 D) materials, which makes fabrication of new magnetic 2 D materials a fascinating issue.Here, we report the growth of monolayer VSe_2 by molecular beam epitaxy(MBE) method. Electronic properties measurements by scanning tunneling spectroscopy(STS) method revealed that the asgrown monolayer VSe_2 has magnetic characteristic peaks in its electronic density of states and a lower work-function at its edges. Moreover, air exposure experiments show air-stability of the monolayer VSe_2. This high-quality monolayer VSe_2, a very air-inert 2 D material with magnetism and low edge work function, is promising for applications in developing next-generation low power-consumption, high efficiency spintronic devices and new electrocatalysts.
基金The authors gratefully acknowledge Jun Zhang for experimental assistance,Paul Weiss for useful discussions,Prof.J.W.Ciszek and Prof.J.M.Tour for synthesis of the F-OPE molecule,and the support from NSF grant ECCS-0601303R.Giridharagopal acknowledges the support of an NSF graduate fellowship.D.Natelson also aknowledges the David and Lucille Packard Foundation,the Alfred P.Sloan Foundation,the Robert A.Welch Foundation,and the Research Corporation.K.F.Kelly also acknowledges the Rochester MURI on Nanoscale Subsurface Spectroscopy and Tomography(F49620-031-0379),administered by the Air Force Office of Scientific Research.
文摘Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors.While the details remain elusive in many systems,this charge transfer has been inferred in a number of photoemission experiments.We present electronic transport measurements in very short channel(L<100 nm)transistors made from poly(3-hexylthiophene)(P3HT).As channel length is reduced,the evolution of the contact resistance and the zero gate voltage conductance are consistent with such charge transfer.Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts,consistent with charge transfer expectations.Alternating current scanning tunneling microscopy(ACSTM)provides further evidence that holes are transferred from Pt into P3HT,while much less charge transfer takes place at the Au/P3HT interface.