Two novel asymmetric organic small molecules of IT(2FBT-T3Cz)_2and IT(2FBT-TT3Cz)_2with an indenothiophene(IT)central donor core,fluorinated benzothiadiazole(2FBT)as acceptor and 3-carbazole(Cz)unit as terminal group ...Two novel asymmetric organic small molecules of IT(2FBT-T3Cz)_2and IT(2FBT-TT3Cz)_2with an indenothiophene(IT)central donor core,fluorinated benzothiadiazole(2FBT)as acceptor and 3-carbazole(Cz)unit as terminal group were designed and synthesized as the donor materials in organic solar cells(OSCs).The thermal,optical absorption,electrochemical property,hole–electron mobility,film morphology were thoroughly studied.Using PC_(71)BM as an electron acceptor,without any additive and thermal annealing(TA)treatment,the IT(2FBT-T3Cz)_2-based cells showed a promising power conversion efficiency(PCE)of5.81%and the IT(2FBT-TT3Cz)_2-based cells exhibited a PCE of 4.39%.Our results demonstrate that the IT-based asymmetric small molecules can be developed as a promising class of donor materials for highperformance OSCs.展开更多
Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delive...Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delivered a respectable power conversion efficiency(PCE) of 7.89% and a high open-circuit voltage(Voc) of 0.97 V,which far exceeded the values of the devices based on other two small molecules. The highest PCE for the device based on TXO is mainly contributed from its lowest series resistance(Rs) value and largest short-circuit current(Jsc) value under the same circumstances. All these results indicate that TXO is a promising HTM candidate for Pv SCs.展开更多
Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and...Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.展开更多
Comprehensive Summary Compared to electron transporting layer materials,the species and numbers of hole transporting layer(HTL)materials for organic solar cells(OSCs)are rare.The development of HTL materials with exce...Comprehensive Summary Compared to electron transporting layer materials,the species and numbers of hole transporting layer(HTL)materials for organic solar cells(OSCs)are rare.The development of HTL materials with excellent hole collection ability and non-corrosive nature is a long-standing issue in the field of OSCs.Herein,we designed and synthesized a series of conjugated polyelectrolytes(CPEs)with continuously varied energy levels toward HTL materials for efficient OSCs.Through a“mutual doping”treatment,we obtained a CPE composite PCT-F:POM with a WF of 5.48 eV and a conductivity of 1.56х10^(-3)S/m,meaning that a good hole collection ability can be expected for PCT-F:POM.The OSC modified by PCT-F:POM showed a high PCE of 18.0%,which was superior to the reference device with PEDOT:PSS.Moreover,the PCT-F:POM-based OSC could maintain 91%of the initial PCE value after storage of 20 d,meaning that the long-term stability of OSCs is improved by incorporating the PCT-F:POM HTL.In addition,PCT-F:POM possesses good compatibility with large-area processing technique;i.e.,a PCT-F:POM HTL was processed by the blade-coating method for fabricating 1 cm^(2)OSC,and a PCE of 15.1%could be achieved.The results suggest the promising perspective of PCT-F:POM in practical applications.展开更多
Organic π-functional molecules are the foundation and basic component of organic optoelectronic devices.For example,for ideal carrier transporting materials,extended π-conjugation and ordered π-πstacking are neces...Organic π-functional molecules are the foundation and basic component of organic optoelectronic devices.For example,for ideal carrier transporting materials,extended π-conjugation and ordered π-πstacking are necessary to enhance the charge mobility and achieve desirable results.As a promising way to convert sunlight into electricity,organometal halide perovskite solar cells(PSCs) have captured a lot of attention due to its predominant merits especially in the aspect of remarkable photovoltaic performance and much potentially low production cost.For conventional planar PSC structure,hole-transporting layer which typically consists of organic π-functional materials plays a key role in suppressing holeelectron pair recombination,promoting charge transporting and ensuring ohmic contact of back electrode.Considering the key roles of HTMs and its soaring progress in recent years,here,we will summarize recent progress in small organic π-functional materials from its diverse functions in PSCs.Besides,aiming to further promote the development of organic π-functional molecules and HTMs,a promising direction toward highly efficient HTMs will also be discussed.展开更多
In the light of superior interaction between pyridine unit and perovskite,a facile star-shaped triphenylamine-based hole transport material(HTM)incorporating pyridine core(coded as H-Pyr)is designed and synthesized.A ...In the light of superior interaction between pyridine unit and perovskite,a facile star-shaped triphenylamine-based hole transport material(HTM)incorporating pyridine core(coded as H-Pyr)is designed and synthesized.A reference HTM with benzene core,coded as H-Ben,is also prepared for a comparative study.The effects of varying core on HTMs are investigated by comparing the photophysical,electrochemical and hole mobility properties.It is found that pyridine core exhibits better conjunction and decreased dihedral angles with triphenylamine side arms than that of benzene,leading to obviously better hole mobility and well-matched work function.The perovskite film prepared on H-Pyr also shows improved crystallization than on H-Ben.Photoluminescence and electrochemical impedance studies indicate improved charge extraction and reduced recombination in the H-Pyr-based perovskite solar cells.Consequently,H-Pyr-based device exhibits higher efficiency than H-Ben-based one.After doping with a Lewis acid,tris(pentafluorophenyl)borane,H-Pyr-based device delivers a champion efficiency of 17.09%,which is much higher compared with 12.14% of the device employing conventional poly(3,4-ethy lenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)as HTM.Moreover,the H-Pyr-based device displays good long-term stability that the power conversion efficiency remains over 80% of the initial value after storage in ambient(relative humidity=50±5%)for 20 days.展开更多
Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of t...Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed flu- orescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the "hot exciton" materials based on hy- bridized local and charge-transfer (HLCT) states were developed to he a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular lumi- nescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.展开更多
In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost sol...In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage,hole transporting materials(HTMs)based on conjugated polymers have received increasing attention in the past decade.In this perspective,recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs),perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs)are summarized and perspectives on their future development are also presented.展开更多
钙钛矿太阳能电池(perovskite solar cells,PVSCs)因长期稳定性差和制造成本高难以实现工业化生产。其制备中最常用的空穴传输材料(hole-transporting materials,HTMs)为2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴,需一定...钙钛矿太阳能电池(perovskite solar cells,PVSCs)因长期稳定性差和制造成本高难以实现工业化生产。其制备中最常用的空穴传输材料(hole-transporting materials,HTMs)为2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴,需一定量吸湿添加剂以实现高效的空穴提取,导致对水敏感的钙钛矿层受到破坏。无掺杂HTMs避免了吸湿添加剂的使用,且成本低、合成步骤简单。综述了应用于n-i-p型PVSCs的YT5、M7-TFSI、P3HT、PBDB-Cz等高效率无掺杂有机小分子以及聚合物HTMs,提出了理想HTMs在器件性能、分子结构、合成条件、经济成本等方面的设计原则,并展望了无掺杂HTMs在PVSCs商业化过程中的应用前景。展开更多
White organic light-emitting device (WOLEDs) employing molecular mixed host (MH) is demonstrated by spin-coating.The spin-coated film functions as light-emitting layer and hole transporting layer,with the former forme...White organic light-emitting device (WOLEDs) employing molecular mixed host (MH) is demonstrated by spin-coating.The spin-coated film functions as light-emitting layer and hole transporting layer,with the former formed by spin-coating solution containing MH of NPB (N.N'-Bis(naphthalene-1-yl)-N,N'-bis(phenyl)-benzidine) and MADN (2-methyl-9,10-di(2-naphthyl) anthracene),blue dye (4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and yellow dye (5,6,11,12-tetraphenylnaphacene).The performances of the devices made with different mixed ratio of MH are investigated.It is found that the device performances depends on the MH ratio,and under the optimal NPB:MADN ratio (60:40),the WOLEDs show a maximum luminance of 24 671 cd/m2 and a current efficiency of 5.8 cd/A for the practical luminance of 1000 cd/m2.The effect of MH ratio on device performances can be attributed to the difference of hole mobility between the NPB and MADN.展开更多
As the third generation new battery,the power conversion efficiency(PCE)of metal halide perovskite solar cells(PsCs)has increased from 3.8%in 2009 to 25.8%currently certified,which fully shows that they have great res...As the third generation new battery,the power conversion efficiency(PCE)of metal halide perovskite solar cells(PsCs)has increased from 3.8%in 2009 to 25.8%currently certified,which fully shows that they have great research value and development prospect.As one of the main components of high-efficiency PSCs,hole transport materials(HTMs)play an important role in extracting and transporting holes and inhibiting charge recombination.However,commonly used HTMs require doping,and the hygroscopicity and corrosiveness of the dopants will destroy the stability of PsCs and hinder their commercialization.Therefore,it is of great significance to develop dopant-free HTMs.展开更多
基金supported by the National Natural Science Foundation of China (51403178, 51573154)the Project of Hunan Natural Science Foundation (2018JJ2391, 2015JJ3113)the Scientific Research Fund of Hunan Provincial Education Department (14C1099, YB2015B025, 13A102)
文摘Two novel asymmetric organic small molecules of IT(2FBT-T3Cz)_2and IT(2FBT-TT3Cz)_2with an indenothiophene(IT)central donor core,fluorinated benzothiadiazole(2FBT)as acceptor and 3-carbazole(Cz)unit as terminal group were designed and synthesized as the donor materials in organic solar cells(OSCs).The thermal,optical absorption,electrochemical property,hole–electron mobility,film morphology were thoroughly studied.Using PC_(71)BM as an electron acceptor,without any additive and thermal annealing(TA)treatment,the IT(2FBT-T3Cz)_2-based cells showed a promising power conversion efficiency(PCE)of5.81%and the IT(2FBT-TT3Cz)_2-based cells exhibited a PCE of 4.39%.Our results demonstrate that the IT-based asymmetric small molecules can be developed as a promising class of donor materials for highperformance OSCs.
基金supported by the National Natural Science Foundation of China(Nos.61325026,51503209)the Natural Science Foundation of Fujian Province(No.2015H0050)
文摘Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delivered a respectable power conversion efficiency(PCE) of 7.89% and a high open-circuit voltage(Voc) of 0.97 V,which far exceeded the values of the devices based on other two small molecules. The highest PCE for the device based on TXO is mainly contributed from its lowest series resistance(Rs) value and largest short-circuit current(Jsc) value under the same circumstances. All these results indicate that TXO is a promising HTM candidate for Pv SCs.
基金the National Natural Science Foundation of China(22065038)the Key Project of Natural Science Foundation of Yunnan(KC10110419)+4 种基金the High-Level Talents Introduction in Yunnan Province(C619300A010)the Fund for Excellent Young Scholars of Yunnan(K264202006820)the Program for Excellent Young Talents of Yunnan University and Major Science(C176220200)the International Joint Research Center for Advanced Energy Materials of Yunnan Province(202003AE140001)the Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province(No.2019Z E001-1202002AB080001)for financial support。
文摘Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.
基金support from Fundamental Research Funds for the Central Universities(buctrc202140)the National Natural Science Foundation of China(No.52273166).
文摘Comprehensive Summary Compared to electron transporting layer materials,the species and numbers of hole transporting layer(HTL)materials for organic solar cells(OSCs)are rare.The development of HTL materials with excellent hole collection ability and non-corrosive nature is a long-standing issue in the field of OSCs.Herein,we designed and synthesized a series of conjugated polyelectrolytes(CPEs)with continuously varied energy levels toward HTL materials for efficient OSCs.Through a“mutual doping”treatment,we obtained a CPE composite PCT-F:POM with a WF of 5.48 eV and a conductivity of 1.56х10^(-3)S/m,meaning that a good hole collection ability can be expected for PCT-F:POM.The OSC modified by PCT-F:POM showed a high PCE of 18.0%,which was superior to the reference device with PEDOT:PSS.Moreover,the PCT-F:POM-based OSC could maintain 91%of the initial PCE value after storage of 20 d,meaning that the long-term stability of OSCs is improved by incorporating the PCT-F:POM HTL.In addition,PCT-F:POM possesses good compatibility with large-area processing technique;i.e.,a PCT-F:POM HTL was processed by the blade-coating method for fabricating 1 cm^(2)OSC,and a PCE of 15.1%could be achieved.The results suggest the promising perspective of PCT-F:POM in practical applications.
基金the financial support from the National Natural Science Foundation of China(Nos.21572152 and 61575136)funded by Collaborative Innovation Center (CIC) of Suzhou Nano Science and Technologyby the Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD)
文摘Organic π-functional molecules are the foundation and basic component of organic optoelectronic devices.For example,for ideal carrier transporting materials,extended π-conjugation and ordered π-πstacking are necessary to enhance the charge mobility and achieve desirable results.As a promising way to convert sunlight into electricity,organometal halide perovskite solar cells(PSCs) have captured a lot of attention due to its predominant merits especially in the aspect of remarkable photovoltaic performance and much potentially low production cost.For conventional planar PSC structure,hole-transporting layer which typically consists of organic π-functional materials plays a key role in suppressing holeelectron pair recombination,promoting charge transporting and ensuring ohmic contact of back electrode.Considering the key roles of HTMs and its soaring progress in recent years,here,we will summarize recent progress in small organic π-functional materials from its diverse functions in PSCs.Besides,aiming to further promote the development of organic π-functional molecules and HTMs,a promising direction toward highly efficient HTMs will also be discussed.
基金supported by the National Key R&D Program of China(2019YFB1503202)the 111 Project(B16016)+1 种基金the National Natural Science Foundation of China(61904053,51702096,U1705256 and 51572080)the Fundamental Research Funds for the Central Universities(2019MS026,2019MS027 and 2020MS080)。
文摘In the light of superior interaction between pyridine unit and perovskite,a facile star-shaped triphenylamine-based hole transport material(HTM)incorporating pyridine core(coded as H-Pyr)is designed and synthesized.A reference HTM with benzene core,coded as H-Ben,is also prepared for a comparative study.The effects of varying core on HTMs are investigated by comparing the photophysical,electrochemical and hole mobility properties.It is found that pyridine core exhibits better conjunction and decreased dihedral angles with triphenylamine side arms than that of benzene,leading to obviously better hole mobility and well-matched work function.The perovskite film prepared on H-Pyr also shows improved crystallization than on H-Ben.Photoluminescence and electrochemical impedance studies indicate improved charge extraction and reduced recombination in the H-Pyr-based perovskite solar cells.Consequently,H-Pyr-based device exhibits higher efficiency than H-Ben-based one.After doping with a Lewis acid,tris(pentafluorophenyl)borane,H-Pyr-based device delivers a champion efficiency of 17.09%,which is much higher compared with 12.14% of the device employing conventional poly(3,4-ethy lenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)as HTM.Moreover,the H-Pyr-based device displays good long-term stability that the power conversion efficiency remains over 80% of the initial value after storage in ambient(relative humidity=50±5%)for 20 days.
基金supported by the National Natural Science Foundation of China(21334002,51303057,51373054,91233113)the National Basic Research Program of China(2013CB834705,2014CB643504,2015CB655003)+1 种基金the Fundamental Research Funds for the Central Universities(2013ZZ0001)the Introduced Innovative R&D Team of Guangdong(201101C0105067115)
文摘Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed flu- orescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the "hot exciton" materials based on hy- bridized local and charge-transfer (HLCT) states were developed to he a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular lumi- nescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.
基金supported by the National Natural Science Foundation of China(Nos.21774015 and 21975027)NSFC-MAECI(No.51861135202).
文摘In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage,hole transporting materials(HTMs)based on conjugated polymers have received increasing attention in the past decade.In this perspective,recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs),perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs)are summarized and perspectives on their future development are also presented.
文摘钙钛矿太阳能电池(perovskite solar cells,PVSCs)因长期稳定性差和制造成本高难以实现工业化生产。其制备中最常用的空穴传输材料(hole-transporting materials,HTMs)为2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴,需一定量吸湿添加剂以实现高效的空穴提取,导致对水敏感的钙钛矿层受到破坏。无掺杂HTMs避免了吸湿添加剂的使用,且成本低、合成步骤简单。综述了应用于n-i-p型PVSCs的YT5、M7-TFSI、P3HT、PBDB-Cz等高效率无掺杂有机小分子以及聚合物HTMs,提出了理想HTMs在器件性能、分子结构、合成条件、经济成本等方面的设计原则,并展望了无掺杂HTMs在PVSCs商业化过程中的应用前景。
基金supported by the National Basic Research Program of China (Grant No.2006CB921602)the Ministry of Education of China (Grant No.107100)the Program for New Century Excellent Talents in University and the Technology Program of Shaanxi Province (Grant No.2006K04-c25)
文摘White organic light-emitting device (WOLEDs) employing molecular mixed host (MH) is demonstrated by spin-coating.The spin-coated film functions as light-emitting layer and hole transporting layer,with the former formed by spin-coating solution containing MH of NPB (N.N'-Bis(naphthalene-1-yl)-N,N'-bis(phenyl)-benzidine) and MADN (2-methyl-9,10-di(2-naphthyl) anthracene),blue dye (4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and yellow dye (5,6,11,12-tetraphenylnaphacene).The performances of the devices made with different mixed ratio of MH are investigated.It is found that the device performances depends on the MH ratio,and under the optimal NPB:MADN ratio (60:40),the WOLEDs show a maximum luminance of 24 671 cd/m2 and a current efficiency of 5.8 cd/A for the practical luminance of 1000 cd/m2.The effect of MH ratio on device performances can be attributed to the difference of hole mobility between the NPB and MADN.
基金supported by the National Natural Science Foundation of China(Nos.51763013 and U20A20128)Jiangxi Provincial Natural Science Foundation(No.20224ACB213002)+1 种基金the Foundation of Jiangxi Educational Committee(No.GJJ200301)Jiangxi Provincial High-level and High-skilled Leading Talents Project.
文摘As the third generation new battery,the power conversion efficiency(PCE)of metal halide perovskite solar cells(PsCs)has increased from 3.8%in 2009 to 25.8%currently certified,which fully shows that they have great research value and development prospect.As one of the main components of high-efficiency PSCs,hole transport materials(HTMs)play an important role in extracting and transporting holes and inhibiting charge recombination.However,commonly used HTMs require doping,and the hygroscopicity and corrosiveness of the dopants will destroy the stability of PsCs and hinder their commercialization.Therefore,it is of great significance to develop dopant-free HTMs.