期刊文献+
共找到313篇文章
< 1 2 16 >
每页显示 20 50 100
Variations in Soil Organic Matter Content in Cultivated and Uncultivated Calcareous Soils from the Mediterranean Island of Malta after 15 Years of Cultivation
1
作者 Anthony T. Sacco Marcelle Agius Clara Didier 《Open Journal of Soil Science》 2024年第4期210-226,共17页
The soils of Malta are calcareous and generally undeveloped. Organic matter (OM) in these soils is low and farmers are constantly urged to increase it. The objective of this study was to evaluate any temporal variatio... The soils of Malta are calcareous and generally undeveloped. Organic matter (OM) in these soils is low and farmers are constantly urged to increase it. The objective of this study was to evaluate any temporal variation in soil OM after 15 years of cultivation, and determine whether soil series, soil depth, and cultivation influence variation. OM was determined in the topsoil and subsoil of 7 agricultural and 4 non-agricultural sites. The sites represented 7 different soil series that are present on the island. In sampling periods 1 (t = 0 years) and 2 (t =15 years), the OM content in the collective (all soil series) bulk (topsoil and subsoil) uncultivated soil was 3.9 % and 3.8 % respectively. This was significantly greater than that of the collective bulk cultivated soil (2.4% and 2.3%). The OM in the collective uncultivated topsoil was 5.4% and 5.2% in periods 1 and 2 and was significantly higher than that of the cultivated topsoil (2.5% in both periods). The OM content in the collective uncultivated subsoil was 2.3% and 2.5% in periods 1 and 2 respectively but only that measured in period 2 was significantly higher than that of the cultivated subsoil (2.2% in both periods). On an individual soil series basis, the OM in the uncultivated topsoils was significantly higher than that of their cultivated counterparts. The differences in the subsoils were not significant. Across the uncultivated soil series, OM was significantly higher in the topsoil than in the subsoil but in the cultivated soil series the differences between topsoil and subsoil were not significant. There was no significant difference in OM between the uncultivated soils of different series, but in the cultivated the OM content was higher in soils that were more mature. After 15 years, no significant change in OM occurred in both the collective cultivated and uncultivated bulk soils, the collective topsoil and subsoil, and in most of the individual series. The OM content of each soil series was also similar to what was reported 60 and 50 years earlier by other researchers. 展开更多
关键词 Soil organic Carbon Agricultural Land Non-Agricultural Land Land Management
下载PDF
Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests 被引量:1
2
作者 Ewa Błońska Wojciech Prazuch Jarosław Lasota 《Forest Ecosystems》 SCIE CSCD 2023年第3期316-327,共12页
The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising no... The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising north(N)and south(S)exposure along the altitudinal gradient(600,800,1000 and 1200 m a.s.l.)was set up.By comparing the properties of decomposing deadwood and those of the soils located directly beneath the decaying wood we drew conclusions about the role of deadwood in the shaping of soil organic matter fractions and soil carbon storage in different climate conditions.The basic properties,enzymatic activity and fractions of soil organic matter(SOM)were determined in deadwood and affected directly by the components released from decaying wood.Heavily decomposed deadwood impacts soil organic matter stabilization more strongly than the less decayed deadwood and the light fraction of SOM is more sensitive to deadwood effects than the heavy fraction regardless of the location in the altitude gradient.Increase in SOM mineral-associated fraction C content is more pronounced in soils under the influence of deadwood located in lower locations of warmer exposure.Nutrients released from decaying wood stimulate the enzymatic activity of soils that are within the range of deadwood influence. 展开更多
关键词 Enzyme activity Forest soils Heavy fraction Light fraction Soil organic matter
下载PDF
Subtropical forest macro-decomposers rapidly transfer litter carbon and nitrogen into soil mineral-associated organic matter
3
作者 Guoxiang Niu Tao Liu +4 位作者 Zhen Zhao Xuebing Zhang Huiling Guan Xiaoxiang He Xiankai Lu 《Forest Ecosystems》 SCIE CSCD 2024年第2期131-139,共9页
Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SO... Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter(POM vs.MAOM)is a promising method for identifying how SOM contributes to reducing global warming.Soil macrofauna,earthworms,and millipedes have been found to play an important role in facilitating SOM processes.However,how these two co-existing macrofaunae impac the litter decomposition process and directly impact the formation of POM and MAOM remains unclear.Methods:Here,we set up a microcosm experiment,which consisted of 20 microcosms with four treatments earthworm and litter addition(E),millipedes and litter addition(M),earthworm,millipedes,and litter addition(E+M),and control(only litter addition)in five replicates.The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes.After incubating the samples for 42 days,the litte properties(mass,C,and N contents),soil physicochemical properties,as well as the C and N contents,and POM and MAOM^(13)C abundance in the 0–5 and 5–10 cm soil layers were measured.Finally,the relative influences o soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed Results:The litter mass,C,and N associated with all four treatments significantly decreased after incubation especially under treatment E+M(litter mass:-58.8%,litter C:-57.0%,litter N:-75.1%,respectively),while earthworm biomass significantly decreased under treatment E.Earthworm or millipede addition alone showed no significant effects on the organic carbon(OC)and total nitrogen(TN)content in the POM fraction,but join addition of both significantly increased OC and TN regardless of soil depth.Importantly,all three macrofauna treatments increased the OC and TN content and decreased the^(13)C abundance in the MAOM fraction.More than65%of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties.Changes in the OC distribution in the 0–5 cm soi layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi(AMF),while those in the 5–10 cm layer are probably caused by increases in soil exchangeable Ca and Mg,in addition to fungi and gram-negative(GN)bacteria.The observed TN distribution changes in the 0–5 cm soil likely resulted from a decrease in soil pH and increases in AMF,GN,and gram-negative(GP)bacteria,while TN distribution changes in the 5–10 cm soil could be explained by increases in exchangeable Mg and GN bacteria.Conclusions:The results indicate that the coexistence of earthworms and millipedes can accelerate the litte decomposition process and store more C in the MAOM fractions.This novel finding helps to unlock the processe by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil mac rofauna in maintaining C-neutral atmospheric conditions under global climate change. 展开更多
关键词 Tropical and subtropical forest Soil organic matter fractions EARTHWORM MILLIPEDES Litter decomposition
下载PDF
Mapping soil organic matter in cultivated land based on multi-year composite images on monthly time scales
4
作者 Jie Song Dongsheng Yu +4 位作者 Siwei Wang Yanhe Zhao Xin Wang Lixia Ma Jiangang Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1393-1408,共16页
Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to pred... Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to predict SOM with high accuracy using multiyear synthetic remote sensing variables on a monthly scale.We obtained 12 monthly synthetic Sentinel-2 images covering the study area from 2016 to 2021 through the Google Earth Engine(GEE)platform,and reflectance bands and vegetation indices were extracted from these composite images.Then the random forest(RF),support vector machine(SVM)and gradient boosting regression tree(GBRT)models were tested to investigate the difference in SOM prediction accuracy under different combinations of monthly synthetic variables.Results showed that firstly,all monthly synthetic spectral bands of Sentinel-2 showed a significant correlation with SOM(P<0.05)for the months of January,March,April,October,and November.Secondly,in terms of single-monthly composite variables,the prediction accuracy was relatively poor,with the highest R^(2)value of 0.36 being observed in January.When monthly synthetic environmental variables were grouped in accordance with the four quarters of the year,the first quarter and the fourth quarter showed good performance,and any combination of three quarters was similar in estimation accuracy.The overall best performance was observed when all monthly synthetic variables were incorporated into the models.Thirdly,among the three models compared,the RF model was consistently more accurate than the SVM and GBRT models,achieving an R^(2)value of 0.56.Except for band 12 in December,the importance of the remaining bands did not exhibit significant differences.This research offers a new attempt to map SOM with high accuracy and fine spatial resolution based on monthly synthetic Sentinel-2 images. 展开更多
关键词 soil organic matter Sentinel-2 monthly synthetic images machine learning model spatial prediction
下载PDF
Persistence of fertilization effects on soil organic carbon in degraded alpine wetlands in the Yellow River source region
5
作者 DUAN Peng WEI Rongyi +7 位作者 WANG Fangping LI Yongxiao SONG Ci HU Bixia YANG Ping ZHOU Huakun YAO Buqing ZHAO Zhizhong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1358-1371,共14页
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta... In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content. 展开更多
关键词 Degraded alpine wetlands FERTILIZER Soil organic carbon Temporal variation Vegetation aboveground biomass Yellow River source region
下载PDF
Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region?
6
作者 Jialin Yang Liangqi Ren +6 位作者 Nanhai Zhang Enke Liu Shikun Sun Xiaolong Ren Zhikuan Jia Ting Wei Peng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1541-1556,共16页
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont... Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area. 展开更多
关键词 plastic film mulching soil organic carbon labile organic carbon fractions semiarid area
下载PDF
Fertilization and Soil Ploughing Practices under Changing Physical Environment Lead to Soil Organic Carbon Dynamics under Conservation Agriculture in Rice-Wheat Cropping System: A Scoping Review
7
作者 Salwinder Singh Dhaliwal Arvind Kumar Shukla +8 位作者 Sanjib Kumar Behera Sarwan Kumar Dubey Agniva Mandal Mehakpreet Kaur Randhawa Sharanjit Kaur Brar Gagandeep Kaur Amardeep Singh Toor Sohan Singh Walia Priyadarshani Arun Khambalkar 《Agricultural Sciences》 2024年第1期82-113,共32页
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ... Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system. 展开更多
关键词 TILLAGE Conservation Agriculture Soil organic Carbon Carbon Fractions Rice-Wheat System organic Amendments
下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
8
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil organic C Green Manure Deer Browse Forage Cropping Systems
下载PDF
National Soil Organic Carbon Stocks Inventories under Different Mangrove Forest Types in Gabon
9
作者 Rolf Gaël Mabicka Obame Neil-Yohan Musadji +5 位作者 Jean Hervé Mve Beh Lydie-Stella Koutika Jean Aubin Ondo Farrel Nzigou Boucka Michel Mbina Mounguengui Claude Geffroy 《Open Journal of Forestry》 2024年第2期127-140,共14页
Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear... Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear. To address this gap, determining the SOC spatial variation in Gabonese’s estuarine is essential for better understanding the global carbon cycle. The present study compared soil organic carbon between northern and southern sites in different mangrove forest, Rhizophora racemosa and Avicennia germinans. The results showed that the mean SOC stocks at 1 m depth were 256.28 ± 127.29 MgC ha<sup>−</sup><sup>1</sup>. Among the different regions, SOC in northern zone was significantly (p p < 0.001). The deeper layers contained higher SOC stocks (254.62 ± 128.09 MgC ha<sup>−</sup><sup>1</sup>) than upper layers (55.42 ± 25.37 MgC ha<sup>−</sup><sup>1</sup>). The study highlights that low deforestation rate have led to less CO<sub>2</sub> (705.3 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup> - 922.62 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup>) emissions than most sediment carbon-rich mangroves in the world. These results highlight the influence of soil texture and mangrove forest types on the mangrove SOC stocks. The first national comparison of soil organic carbon stocks between mangroves and upland tropical forests indicated SOC stocks were two times more in mangroves soils (51.21 ± 45.00 MgC ha<sup>−</sup><sup>1</sup>) than primary (20.33 ± 12.7 MgC ha<sup>−</sup><sup>1</sup>), savanna and cropland (21.71 ± 15.10 MgC ha<sup>−</sup><sup>1</sup>). We find that mangroves in this study emit lower dioxide-carbon equivalent emissions. This study highlights the importance of national inventories of soil organic carbon and can be used as a baseline on the role of mangroves in carbon sequestration and climate change mitigation but the variation in SOC stocks indicates the need for further national data. 展开更多
关键词 Mangroves Forest Soil organic Carbon Stocks Rizophora Racemose Avicenia germinans GABON
下载PDF
Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic 被引量:1
10
作者 M.F.Hossain W.Chen Yu Zhang 《Information Processing in Agriculture》 EI 2015年第3期183-190,共8页
Bulk density is an indicator of soil compaction subject to anthropogenic impact,essential to the interpretation of any nutrient budgets,especially to perform carbon inventories.It is so expensive to measure bulk densi... Bulk density is an indicator of soil compaction subject to anthropogenic impact,essential to the interpretation of any nutrient budgets,especially to perform carbon inventories.It is so expensive to measure bulk density in arctic/sub-arctic and there are relatively very few field measurements are available.Therefore,to establish a bulk density and SOC empirical relationship in Canada’s arctic and sub-arctic ecosystems,compiled all the bulk density and SOC measurements that are available in Northern Canada.In addition an attempt has been made for bulk density and SOC field measurement in Yellowknife and Lupin,to develop an empirical relationship for Canada’s arctic and sub-arctic.Relationships between bulk density(BD)and soil organic carbon(SOC)for mineral soil and organic soils(0–100 cm depth)were described by exponential functions.The best fit model,predictive bulk density(BDp),for mineral soil,(BDp=0.701+0.952 exp(0.29 SOC),n=702,R2=0.99);for organic soil(BDp=0.074+2.632 exp(0.076 SOC),n=674,R2=0.93).Different soil horizons have different bulk densities and may require different predictive equations,therefore,developed predictive best fit exponential equation for both mineral and organic soils together(BDp=0.071+1.322 exp(0.071 SOC),n=1376,R2=0.984),where X is a dummy variable with a value of 0 for surface peat(0–25 cm depth)and 1 for subsurface peat(25–175 cm).We recommend using the soil organic carbon density approach to estimate BD from SOC because it allows BD to be predicted without significant bias. 展开更多
关键词 Bulk density Mineral and organic soils Canada’s arctic and sub-arctic
原文传递
Impacts of soil organic matter, pH and exogenous copper on sorption behavior of norfloxacin in three soils 被引量:21
11
作者 ZHANG Jie LI Zhaojun +3 位作者 GE Gaofei SUN Wanchun LIANG Yongchao WU Laosheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第5期632-640,共9页
Norfloxacin sorption and the factors (soil organic matter (SOM), pH, and exogenous copper (Cu) influencing the sorption were investigated in a black soil (soil B), a fluvo-aquic soil (soil F), and a red soil ... Norfloxacin sorption and the factors (soil organic matter (SOM), pH, and exogenous copper (Cu) influencing the sorption were investigated in a black soil (soil B), a fluvo-aquic soil (soil F), and a red soil (soil R). With increasing norfloxacin concentrations, sorption amount of norfloxacin increased in both the bulk soils and their SOM-removed soils, but the sorption capacity of SOM-removed soils was higher than that of their corresponding bulk soils, indicating that the process of norfloxacin sorption in soil was influenced by the soil properties including SOM. The sorption data in all bulk soils and SOM-removed soils were fitted to Freundlich and Langmuir models. The correlation coefficients suggested that the experimental data fitted better to Freundlich equation than to Langmuir equation. Furthermore, the data from soil F and SOM-removed F could not be described by Langmuir equation. The norfloxacin sorption amount decreased in soil B and soil F, whereas it increased in soil R as solution pH increased. The maximum KD and Koc were achieved in soil R when the equilibrium solution pH was 6. The norfloxacin sorption was also influenced by the exogenous Cu^2+, which depended on the soil types and Cu^2+ concentrations. With increasing Cu^2+ concentrations in solution, generally, sorption amount, KD and Koc for norfloxacin in soils increased and were up to a peak at 100 mg/L Cu^2+, and then the sorption amount decreased regardless of norfloxacin levels. 展开更多
关键词 COPPER NORFLOXACIN PH soil organic matter SORPTION
下载PDF
Effect of N and P addition on soil organic C potential mineralization in forest soils in South China 被引量:17
12
作者 OUYANG, Xuejun ZHOU, Guoyi +4 位作者 HUANG, Zhongliang ZHOU, Cunyu LI, Jiong SHI, Junhui ZHANG, Deqiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第9期1082-1089,共8页
Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N d... Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana... 展开更多
关键词 ADDITION inorganic N available P MINERALIZATION soil organic C South China
下载PDF
Effects of free iron oxyhydrates and soil organic matter on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils 被引量:14
13
作者 WANG Fang, PAN Genxing, LI Lianqing Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第5期618-624,共7页
Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthro... Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthrosol (Soil H) and Gleyic Stagnic Anthrosol (Soil W)) were investigated with and without treatments of dithionite-citrate-bicarbonate and of H2O2. The size fractions of aggregates were obtained from the undisturbed bulk topsoil using a low energy ultrasonic dispersion procedure. Experiments of equilibrium sorption and subsequent desorption were conducted at soil water ratio of 1:20, 25℃. For Soil H, Cu^2+ sorption capacity of the DCB-treated size fractions was decreased by 5.9% for fine sand fraction, by 40.4% for coarse sand fraction, in comparison to 2.9% for the bnlk sample. However, Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by over 80% for the coarse sand fraction and by 15% for the clay-sized fraction in comparison to 88% for bulk soil. For Soil W, Cu^2+ sorption capacity of the DCB-treated size fraction was decreased by 30% for the coarse sand fraction and by over 75% for silt sand fraction in comparison to 44.5% for the bulk sample. Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by only 2.0% for the coarse sand fraction and by 15% for the fine sand fraction in comparison to by 3.4% for bulk soil. However, Cu^2+ desorption rates were increased much in H2O2-treated samples by over 80% except the clay-sized fraction (only 9.5%) for Soil H. While removal of SOM with H2O2 tendend to increase the desorption rate, DCB- and H2O2-treatments caused decrease in Cu^2+ retention capacity of size fractions, Particularly, there hardly remained Cu^2+ retention capacity by size fractions from Soil H after H2O2 treatment except for clay-sized fraction. These findings supported again the dominance of the coarse sand fraction in sorption of metals and the preference of absorbed metals bound to SOM in differently stabilized status among the size fractions. Thus, enrichment and turnover of SOM in paddy soils may have great effects on metal retention and chemical mobility in paddy soils. 展开更多
关键词 paddy soils Cn^2+ sorption-desorption soil organic matter free iron oxyhydrates size fraction of aggregates
下载PDF
Composition and mineralization of soil organic carbon pools in four single-tree species forest soils 被引量:4
14
作者 Qingkui Wang Micai Zhong 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第6期1277-1285,共9页
Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To un... Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools. 展开更多
关键词 ^13C nuclear magnetic resonance Labile soil organic carbon Monoculture plantation Soil organic carbon mineralization Tree species
下载PDF
Active organic carbon pool of coniferous and broad-leaved forest soils in the mountainous areas of Beijing 被引量:4
15
作者 GENG Yu-qing YU Xin-xiao +2 位作者 YUE Yong-jie LI Jin-hai ZHANG Guo-zhen 《Forestry Studies in China》 CAS 2009年第4期225-230,共6页
In order to explore the effects of different forest types on active soil carbon pool, the amounts and density of soil organic carbon (SOC) were studied at different soil horizons under typical coniferous and broad-l... In order to explore the effects of different forest types on active soil carbon pool, the amounts and density of soil organic carbon (SOC) were studied at different soil horizons under typical coniferous and broad-leaved forests in the mountainous area of Beijing. The results showed that the amount of total SOC, readily oxidizable carbon and particulate organic carbon decreased with increasing depths of soil horizons and the amounts at depths of 0-10 cm and 10-20 cm in broad-leaved forest was clearly higher than that in coniferous forests. The trend of a decrease in SOC density with increasing depth of the soil horizon was similar to that of the amount of SOC. However, no regular trend was found for SOC density at different depths between coniferous forest and broad-leaved forests. The ratio of readily oxidizable carbon to total amount of SOC ranged from 0.36-0.45 and the ratio of particulate organic carbon to total amount of SOC from 0.28-0.73; the ratios decreased with increasing depths of soil horizons. Active SOC was significantly correlated with total SOC; the relationship between readily oxidizable carbon and particulate organic carbon was significant. A broad-leaved forest may produce more SOC than a coniferous forest. 展开更多
关键词 coniferous forest broad-leaved forest readily oxidizable carbon particulate organic carbon soil organic carbon density
下载PDF
Relationship between light and heavy fractions of organic matter for several agricultural soils in China 被引量:1
16
作者 YIN Yun-feng CAI Zu-cong LU Jia-long 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期917-920,共4页
Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFQM, respectively) have been made, little information is available in relation to the rel... Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFQM, respectively) have been made, little information is available in relation to the relationship between LFQM and HFOM, and no attempts have been made to quantify a general relationship between LFQM and HFQM for agricultural soils under field condition. Qur hypothesis is there may be an inherent relationship between LFQM and HFQM for agricultural soils under certain unaltered management practices for a long period, to this end, we therefore studied typically soils taken from different parts in China by using a simple density fractionation procedure. The results indicated that LFQM was positively correlated with LFOM/HFOM ratio for three typical soils. This information will be of particular use not only in deepening our understanding of the dynamics of SQM fractions but also in evaluating the potential of agricultural soils to sequestrate C under different management practices in a long term. 展开更多
关键词 soil organic matter light fraction heavy fraction agricultural soils
下载PDF
Labile and stabile soil organic carbon fractions in surface horizons of mountain soils–relationships with vegetation and altitude 被引量:1
17
作者 bojko oskar kabala cezary +3 位作者 mendyk Lukasz markiewicz maciej pagacz-kostrzewa magdalena glina bartlomiej 《Journal of Mountain Science》 SCIE CSCD 2017年第12期2391-2405,共15页
Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon... Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon(SOC) fractions in forest ecosystems. This study had two aims:(1) to evaluate the effects of altitude and vegetation on the content of labile and stabile forms of organic carbon in the mountain soils; and(2) to assess the impact of the properties of soil organic matter on the SOC pools under changing environmental conditions. The studies were conducted in the Karkonosze Mountains(SW Poland, Central Europe). The content of the most labile fraction of carbon(dissolved organic carbon,DOC) decreases with altitude, but the content of fulvic acids(FA), clearly increases in the zone above 1000 m asl, while the stabile fraction(humins, nonhydrolyzing carbon) significantly decreases. A higher contribution of stabile forms was found in soils under coniferous forests(Norway spruce), while a smaller-under deciduous forests(European beech) and on grasslands. The expected climate change and the ongoing land use transformations in the zone above1000 m asl may lead to a substantial increase in the stable humus fraction(mainly of a non-hydrolyzing carbon) and an increase in the SOC pools, even if humus acids are characterized by a lower maturity and greater mobility favorable to soil podzolization.In the lower zone(below 1000 m asl), a decrease in the most stable humus forms can be expected,accompanied by an increase of DOC contribution,which will result in a reduction in SOC pools. Overall,the expected prevailing(spatial) effect is a decreasing contribution of the most stable humus fractions,which will be associated with a reduction in the SOC pools in medium-high mountains of temperate zone of Central Europe. 展开更多
关键词 Soil organic matter Humus fractions Dissolved organic carbon organic carbon pools VEGETATION Climate Mountain soils
下载PDF
Soil Aggregation and Its Relationship with Organic Carbon of Purple Soils in the Sichuan Basin,China 被引量:1
18
作者 WEI Chao-fu SHAO Jing-an +4 位作者 NI Jiu-pai GAO Ming XIE De-ti PAN Gen-xing Shuichi Hasegawa 《Agricultural Sciences in China》 CAS CSCD 2008年第8期987-998,共12页
The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp... The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation. 展开更多
关键词 aggregation of soil primary particle soil structure soil organic carbon aggregate size distribution complexingof organo-mineral purple soil
下载PDF
A soil quality index for subtropical sandy soils under different Eucalyptus harvest residue managements 被引量:1
19
作者 Jackson Freitas Brilhante de Sao José Maurício Roberto Cherubin +4 位作者 Luciano Kayser Vargas Bruno Brito Lisboa Josiléia Acordi Zanatta Elias Frank Araújo Cimélio Bayer 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期243-255,共13页
Eucalyptus harvest residues are attractive energy production resources for the forestry industry.However,their removal can have adverse impacts on soil quality and forest productivity,especially in sandy soils.In this... Eucalyptus harvest residues are attractive energy production resources for the forestry industry.However,their removal can have adverse impacts on soil quality and forest productivity,especially in sandy soils.In this study,we assessed the effects of Eucalyptus harvest residue managements with variable intensity on forest productivity and on physical,chemical,and biological indicators of the soil quality.The experiment was conducted in a Quartzipsamment(33 g kg-1clay)planted with Eucalyptus saligna in Barra do Ribeiro in southern Brazil.Before the Eucalyptus was planted,residues from the previous rotation were subjected to five different management treatments:(1)FRM,in which all forest residues(bark,branches,leaves,and litter)were allowed to remain on the soil and only trunk wood was removed;(2)FRMB,in which was identical to FRM except that bark was also removed;(3)FRMBr,in which only trunk wood and branches were removed;(4)FRR,which involved removing all types of residues(bark,branches,leaves,and litter);and,(5)FRRs,in which all forest residues from the previous rotation were removed,and leaves and branches from the new plantation were prevented from falling onto the soil surface using a shade net.Six years after planting,soil samples were collected at four different depths(0-2.5,2.5-5,5-10,and 10-20 cm)to determine 17 soil chemical,physical,and biological indicators.The results were combined into a soil quality index(SQI)using the principal component analysis approach.The SQI reduced by 30%,in the 0-20 cm layer,due to removal of harvest residues from the previous rotation,and collection of litter before it falls on the ground.The main drivers of SQI reduction were the principal components associated with soil organic matter and biological activity.Furthermore,the SQI was positively linearly related to tree height at P<0.01 and to tree diameter at breast height at P=0.07.The adverse impact on soil quality and forest productivity in our study indicates that removal of Eucalyptus harvest residues from sandy soils should be avoided. 展开更多
关键词 Forest residues Soil health Soil organic carbon Microbial biomass Soil conservation
下载PDF
Changes in soil organic carbon,nitrogen and sulphur along a slope gradient in apple orchard soils of Kashmir Himalaya
20
作者 Javaid M DAD Lotfollah ABDOLLAHI 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2377-2387,共11页
Accumulation and losses of soil organic carbon(SOC),total nitrogen(TN)and sulphur(S)influence food security and global warming.Therefore,their spatial distribution and variability at regional scale,and their relation ... Accumulation and losses of soil organic carbon(SOC),total nitrogen(TN)and sulphur(S)influence food security and global warming.Therefore,their spatial distribution and variability at regional scale,and their relation to topographical variables are of great interest.In this study,the variability of SOC,TN and S content was evaluated in apple orchard soils of Kashmir region,at three depths(D1:0-10,D2:10-20,and D3:20-30 cm)on slope gradient i.e.:flat,medium,and high.With an increase in slope,a significant decrease of SOC and TN was observed,with concentration of SOC and TN recorded highest(14.3±2.06 g kg-1&0.97±0.35 g kg-1)in flat slope orchards and lowest(9.6±2.07 g kg-1&0.84±0.41 g kg-1)in high slope orchards.On stock basis,the values recorded for flat,medium,and high slope orchards,for SOC and TN were 54.62±4.24 Mg ha-1&0.38±0.06 Mg ha-1,44.13±5.11 Mg ha-1&0.32±0.09 Mg ha-1,and 38.73±5.94 Mg ha-1&0.28±0.10,respectively.The differences for S concentration and stocks were modest,with flat(0.21±0.15 mg kg-1&0.09±0.0.003 Mg ha-1)>high(0.16±0.07 mg kg-1&0.06±0.007 Mg ha-1)>medium(0.12±0.04 mg kg-1&0.075±0.009 Mg ha-1).Across slopes,SOC,TN and S decreased with increasing soil depth,suggesting clear downward trend.Overall,SOC and TN increased with the increase of altitude,precipitation and clay content while its relationship with soil acidity and soil bulk density was negative.The findings may provide scientific basis to structure agricultural development plans or prioritize regions for soil conservation efforts. 展开更多
关键词 Apple orchards SLOPE Soil organic carbon SULPHUR Total nitrogen Soil bulk density
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部