期刊文献+
共找到183,479篇文章
< 1 2 250 >
每页显示 20 50 100
Molecular Structure Tailoring of Organic Spacers for High‑Performance Ruddlesden–Popper Perovskite Solar Cells
1
作者 Pengyun Liu Xuejin Li +6 位作者 Tonghui Cai Wei Xing Naitao Yang Hamidreza Arandiyan Zongping Shao Shaobin Wang Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期314-357,共44页
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P... Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications. 展开更多
关键词 Ruddlesden-Popper perovskites Low-dimensional perovskite solar cells organic spacers Molecular structure Design strategies
下载PDF
Porous Organic Cage‑Based Quasi‑Solid‑State Electrolyte with Cavity‑Induced Anion‑Trapping Effect for Long‑Life Lithium Metal Batteries
2
作者 Wei-Min Qin Zhongliang Li +7 位作者 Wen‑Xia Su Jia‑Min Hu Hanqin Zou Zhixuan Wu Zhiqin Ruan Yue‑Peng Cai Kang Li Qifeng Zheng 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期376-386,共11页
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie... Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries. 展开更多
关键词 Porous organic cage Cavity-induced anion-trapping Quasi-solid-state electrolyte Homogeneous Li+flux Lithium metal battery
下载PDF
An Unprecedented Efficiency with Approaching 21%Enabled by Additive‑Assisted Layer‑by‑Layer Processing in Organic Solar Cells
3
作者 Shuai Xu Youdi Zhang +6 位作者 Yanna Sun Pei Cheng Zhaoyang Yao Ning Li Long Ye Lijian Zuo Ke Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期372-375,共4页
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act... Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs. 展开更多
关键词 organic solar cells Additive-assisted layer-by-layer processing Three-dimensional fibril morphology Bulk p-i-n structure Optical management
下载PDF
A Novel Approach to Synthesizing Porous ZnO Films: Inorganic Chelating Sol-Gel Method 被引量:1
4
作者 杨立荣 靳正国 +1 位作者 步邵静 程志捷 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第3期241-246,共6页
Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface... Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV. 展开更多
关键词 porous ZnO film inorganic chelating sol-gel method pore size distribution PROPERTIES
下载PDF
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 被引量:2
5
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
下载PDF
Combined Promoting Effects of Specific Organic Functional Groups and Alumina Surface Characteristics for the Design of a Highly Efficient NiMo/Al_(2)O_(3) Hydrodesulfurization Catalyst 被引量:2
6
作者 Li Huifeng Li Mingfeng +2 位作者 Zhang Le Wang Wei Nie Hong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期1-11,共11页
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe... To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases. 展开更多
关键词 ALUMINA Mo equilibrium adsorption capacity organic functional groups metal-support interaction HYDRODESULFURIZATION
下载PDF
H-and J-aggregation of conjugated small molecules in organic solar cells 被引量:1
7
作者 Qiaoqiao Zhao Feng He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期174-192,I0005,共20页
As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of con... As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of conjugated small molecular structure and the fabrication process of OSC device.For this end,this review is written.Here,the review firstly introduced the basic information about H-and J-aggregation of conjugated small molecules in OSCs.Then,the characteristics of H-and J-aggregation and the methods to identify them were summarized.Next,it reviewed the research progress of H-and J-aggregation of conjugated small molecules in OSCs,including the factors influencing H-and J-aggregation in thin film and the effects of H-and J-aggregation on OPV performance. 展开更多
关键词 H-AGGREGATION J-AGGREGATION organic solar cells Small molecules EFFICIENCY STABILITY
下载PDF
Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions 被引量:1
8
作者 Tingcheng Zhao Aibin He +3 位作者 Mohammad Nauman Khan Qi Yin Shaokun Song Lixiao Nie 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期93-107,共15页
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u... Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection. 展开更多
关键词 colored rice organic fertilizer soil quality grain yield ANTHOCYANIN
下载PDF
Indolocarbazole-Based Small Molecule Cathode-Active Material Exhibiting Double Redox for High-Voltage Li-Organic Batteries 被引量:1
9
作者 Hyunji Park Hyojin Kye +5 位作者 Jong-Sung Lee Young-Chang Joo Dong Joo Min Bong-Gi Kim Soo Young Park Ji Eon Kwon 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期86-94,共9页
Most organic electrode materials(OEMs)for rechargeable batteries employ n-type redox centers,whose redox potentials are intrinsically limited<3.0 V versus Li^(+)/Li.However,p-type materials possessing high redox po... Most organic electrode materials(OEMs)for rechargeable batteries employ n-type redox centers,whose redox potentials are intrinsically limited<3.0 V versus Li^(+)/Li.However,p-type materials possessing high redox potentials experience low specific capacities because they are capable of only a single redox reaction within the stable electrochemical window of typical electrolytes.Herein,we report 5,11-diethyl-5,11-dihydroindolo[3,2-b]carbazole(DEICZ)as a novel p-type OEM,exhibiting stable plateaus at high discharge potentials of 3.44 and 4.09 V versus Li^(+)/Li.Notably,the second redox potential of DEICZ is within the stable electrochemical window.The mechanism of the double redox reaction is investigated using both theoretical calculations and experimental measurements,including density functional theory calculations,ex situ electron spin resonance,and X-ray photoelectron spectroscopy.Finally,hybridization with single-walled carbon nanotubes(SWCNT)improves the cycle stability and rate performance of DEICZ owing to theπ-πinteractions between the SWCNT and co-planar molecular structure of DEICZ,preventing the dissolution of active materials into the electrolyte.The DEICZ/SWCNT composite electrode maintains 70.4%of its initial specific capacity at 1-C rate and also exhibits high-rate capability,even performing well at 100-C rate.Furthermore,we demonstrate its potential for flexible batteries after applying 1000 bending stresses to the composite electrode. 展开更多
关键词 composite electrodes flexible batteries indolocarbazoles organic rechargeable batteries P-TYPE
下载PDF
A review of physicochemical properties of dissolved organic carbon and its impact over mountain glaciers 被引量:1
10
作者 NIU Hewen CHEN Mengxue +5 位作者 KANG Shichang SHUKLA Tanuj QIN Huili GAO Wanni HUANG Shihai ZHANG Fu 《Journal of Mountain Science》 SCIE CSCD 2024年第1期1-19,共19页
Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous ... Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments.Despite its importance,we still lack systematic understanding for dissolved organic carbon(DOC)in several aspects including exact chemical composition and physical interactions with microorganisms,glacier meltwater.This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission,terrestrial,and biogenic sources.We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings.Results indicate that DOC in snow/ice is made up of aromatic protein-like species,fulvic acid-like materials,and humic acid-like materials.Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive.Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area.Owing to prevailing global warming and projected increase in carbon emission,the glacial DOC is expected to release,which will have strong underlying impacts on cryosphere ecosystem.The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions.A new compilation of globally distributed work is required,including large-scale measurements of glacial DOC over high-altitude cryosphere regions,to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models. 展开更多
关键词 Mountain glaciers Dissolved organic carbon Molecular composition Radiative forcing
下载PDF
Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework 被引量:1
11
作者 Ximeng Liu Dan Zhao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期362-381,共20页
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ... Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed. 展开更多
关键词 Metal-organic frameworks Covalent organic frameworks 3D printing Microstructure MONOLITH
下载PDF
Effect of thermal maturation and organic matter content on oil shale fracturing 被引量:1
12
作者 Fatemeh Saberi Mahboubeh Hosseini‑Barzi 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期16-34,共19页
The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and aft... The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and after heating the samples.We discovered this immature shale that undergoes burial and diagenesis,in which organic matter is converted into hydro-carbons.Primary migration is the process that transports hydrocarbons in the source rock.We investigated this phenomenon by developing a model that simulates hydrocarbon generation and fluid pressure during kerogen-to-hydrocarbon conversion.Microfractures initially formed at the tip/edge of kerogen and were filled with hydrocarbons,but as catagenesis progressed,the pressure caused by the volume increase of kerogen decreased due to hydrocarbon release.The transformation of solid kerogen into low-density bitumen/oil increased the pressure,leading to the development of damage zones in the source rock.The Pabdeh Formation’s small porethroats hindered effective expulsion,causing an increase in pore fluid pressure inside the initial microfractures.The stress accumulated due to hydrocarbon production,reaching the rock’s fracture strength,further contributed to damage zone development.During the expansion process,microfractures preferentially grew in low-strength pathways such as lithology changes,laminae boundaries,and pre-existing microfractures.When the porous pressure created by each kerogen overlapped,individual microfractures interconnected,forming a network of microfractures within the source rock.This research sheds light on the complex interplay between temperature,hydrocarbon generation,and the development of expulsion fractures in the Pabdeh Formation,providing valuable insights for understanding and optimizing hydrocarbon extraction in similar geological settings. 展开更多
关键词 Oil shale MICROFRACTURE Hydrocarbon generation organic matter Thermal maturation Primary migration
下载PDF
Step‑by‑Step Modulation of Crystalline Features and Exciton Kinetics for 19.2%Efficiency Ortho‑Xylene Processed Organic Solar Cells 被引量:1
13
作者 Bosen Zou Weiwei Wu +10 位作者 Top Archie Dela Pena Ruijie Ma Yongmin Luo Yulong Hai Xiyun Xie Mingjie Li Zhenghui Luo Jiaying Wu Chuluo Yang Gang Li He Yan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期258-272,共15页
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.... With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future. 展开更多
关键词 organic solar cells Ternary design Solvent selection Flouro-methoxylated end group Morphological ordering
下载PDF
Significant contributions of the petroleum industry to volatile organic compounds and ozone pollution:Insights from year-long observations in the Yellow River Delta 被引量:1
14
作者 Jinghao Tang Hengqing Shen +7 位作者 Hong Li Yuanyuan Ji Xuelian Zhong Min Zhao Yuhong Liu Mingzhi Guo Fanyi Shang Likun Xue 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第6期39-44,共6页
The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-serva... The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes. 展开更多
关键词 Petroleum industry Volatile organic compounds Ozone pollution Positive matrix factorization Observation-based model
下载PDF
Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries:From Structural Design to Electrochemical Performance 被引量:1
15
作者 Dujuan Li Yuxuan Guo +4 位作者 Chenxing Zhang Xianhe Chen Weisheng Zhang Shilin Mei Chang-Jiang Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期47-81,共35页
Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable en... Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries organic electrodes Functional groups Molecular size/geometry Electrochemical performances
下载PDF
Effect of organic mineral supplementation in reducing oxidative stress in Holstein calves during short‑term heat stress and recovery conditions 被引量:1
16
作者 A-Rang Son Seon-Ho Kim +3 位作者 Mahfuzul Islam Michelle Miguel Ye Pyae Naing Sang-Suk Lee 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期812-825,共14页
Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)duri... Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)during short-term heat stress(HS)and recovery periods.Eight Holstein calves were randomly assigned to four treatment groups:no mineral supplementation(Con),inorganic minerals(IM),organic minerals(OM),and high-concentration organic minerals(HOM)and two thermal environments(HS and recovery)using 4×2 factorial arrangement in a crossover design of four periods of 35 d.Calves were maintained in a temperature-controlled barn.The experimental period consisted of 14 d of HS,14 d of recovery condititon,and a 7-d washing period.Results Body temperature and respiration rate were higher in HS than in the recovery conditions(P<0.05).Selenium concentration in serum was high in the HOM-supplemented calves in both HS(90.38μg/dL)and recovery periods(102.00μg/dL)(P<0.05).During the HS period,the serum cortisol was 20.26 ng/mL in the HOM group,which was 5.60 ng/mL lower than in the control group(P<0.05).The total antioxidant status was the highest in the OM group(2.71 mmol Trolox equivalent/L),followed by the HOM group during HS,whereas it was highest in the HOM group(2.58 mmol Trolox equivalent/L)during the recovery period(P<0.05).Plasma malondialdehyde and HSP70 levels were decreased by HOM supplementation during the HS and recovery periods,whereas SOD and GPX levels were not significantly affected(P>0.05).The principal coordinate analysis represented that the overall rumen microbiota was not influenced by mineral supplementation;however,temperature-induced microbial structure shifts were indicated(PERMANOVA:P<0.05).At the phylum level,Firmicutes and Actinobacteria decreased,whereas Fibrobacteres,Spirochaetes,and Tenericutes increased(P<0.05),under HS conditions.The genus Treponema increased under HS conditions,while Christensenella was higher in recovery conditions(P<0.05).Conclusion HOM supplementation during HS reduced cortisol concentrations and increased total antioxidant status in Holstein bull calves,suggesting that high organic mineral supplementation may alleviate the adverse effects of HS. 展开更多
关键词 Antioxidant status Heat stress Holstein bull calves organic mineral supplementation Oxidative stress
下载PDF
Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria:Current state of the art 被引量:2
17
作者 Karolina Zuchowska Wojciech Filipiak 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期483-505,共23页
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr... Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity. 展开更多
关键词 Volatile organic compounds Pathogenic bacteria metabolites Metabolomics Microextraction techniques Gas chromatography-mass spectrometry In vivo breath analysis In vitro model
下载PDF
Multiple enrichment mechanisms of organic matter in the Fengcheng Formation of Mahu Sag,Junggar Basin,NW China 被引量:1
18
作者 GONG Deyu LIU Zeyang +4 位作者 HE Wenjun ZHOU Chuanmin QIN Zhijun WEI Yanzhao YANG Chun 《Petroleum Exploration and Development》 SCIE 2024年第2期292-306,共15页
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio... Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag. 展开更多
关键词 Junggar Basin Mahu Sag Fengcheng Formation organic matter interglacial period VOLCANISM paleo-salinity paleo-environmental evolution
下载PDF
Mitigation of N_(2)O emissions in water-saving paddy fields:Evaluating organic fertilizer substitution and microbial mechanisms 被引量:1
19
作者 Delei Kong Xianduo Zhang +5 位作者 Qidong Yu Yaguo Jin Peikun Jiang Shuang Wu Shuwei Liu Jianwen Zou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3159-3173,共15页
Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potentia... Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies. 展开更多
关键词 organic manure substitution inorganic fertilizer N_(2)O functional microbe rice paddy
下载PDF
One stone two birds:electrochemical and colorimetric dual-mode biosensor based on copper peroxide/covalent organic framework nanocomposite for ultrasensentive norovirus detection 被引量:1
20
作者 Guobao Ning Quanmei Duan +6 位作者 Huan Liang Huifang Liu Min Zhou Chunlan Chen Chong Zhang Hui Zhao Canpeng Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期920-931,共12页
Norovirus(NoV)is regarded as one of the most common causes of foodborne diarrhea in the world.It is urgent to identify the pathogenic microorganism of the diarrhea in short time.In this work,we developed an electroche... Norovirus(NoV)is regarded as one of the most common causes of foodborne diarrhea in the world.It is urgent to identify the pathogenic microorganism of the diarrhea in short time.In this work,we developed an electrochemical and colorimetric dual-mode detection for NoV based on the excellent dual catalytic properties of copper peroxide/COF-NH_(2)nanocomposite(CuO_(2)@COF-NH_(2)).For the colorimetric detection,NoV can be directly detected by the naked eye based on CuO_(2)@COF-NH_(2)as a laccase-like nonazyme using“peptide-NoV-antibody”recognition mode.The colorimetric assay displayed a wide and quality linear detection range from 1 copy/mL to 5000 copies/mL of NoV with a low limit of detection(LOD)of 0.125 copy/mL.For the electrochemical detection of NoV,CuO_(2)@COF-NH_(2)showed an oxidation peak of copper ion from Cu^(+)to Cu^(2+)using“peptide-NoV-antibody”recognition mode.The electrochemical assay showed a linear detection range was 1-5000 copies/mL with a LOD of 0.152 copy/mL.It's worthy to note that this assay does not need other electrical signal molecule,which provide the stable and sensitive electrochemial detection for NoV.The electrochemical and colorimetric dual-mode detection was used to detect NoV in foods and faceal samples,which has the potential for improving food safety and diagnosing of NoV-infected diarrhea. 展开更多
关键词 NOROVIRUS Specific peptides Electrochemical and colorimetric assay DUAL-MODE Copper peroxide/covalent organic framework
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部