期刊文献+
共找到1,125篇文章
< 1 2 57 >
每页显示 20 50 100
H-and J-aggregation of conjugated small molecules in organic solar cells
1
作者 Qiaoqiao Zhao Feng He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期174-192,I0005,共20页
As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of con... As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of conjugated small molecular structure and the fabrication process of OSC device.For this end,this review is written.Here,the review firstly introduced the basic information about H-and J-aggregation of conjugated small molecules in OSCs.Then,the characteristics of H-and J-aggregation and the methods to identify them were summarized.Next,it reviewed the research progress of H-and J-aggregation of conjugated small molecules in OSCs,including the factors influencing H-and J-aggregation in thin film and the effects of H-and J-aggregation on OPV performance. 展开更多
关键词 H-AGGREGATION J-AGGREGATION organic solar cells Small molecules EFFICIENCY STABILITY
下载PDF
End-group modulation of phenazine based non-fullerene acceptors for efficient organic solar cells with high open-circuit voltage
2
作者 Yahui Zhang Yafeng Li +7 位作者 Ruixiang Peng Yi Qiu Jingyu Shi Zhenyu Chen Jinfeng Ge Cuifen Zhang Zheng Tang Ziyi Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期461-468,I0011,共9页
Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increa... Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increasing optical absorption,refining energy levels,and improving molecular packing in organic semiconductors.Herein,a series of NFAs(Pz IC-4H,Pz IC-4F,Pz IC-4Cl,Pz IC-2Br)with phenazine as the central core and with/without halogen-substituted(dicyanomethylidene)-indan-1-one(IC)as the electron-accepting end group were synthesized,and the effect of end group matched phenazine central unit on the photovoltaic performance was systematically studied.Synergetic photophysical and morphological analyses revealed that the PM6:Pz IC-4F blend involves efficient exciton dissociation,higher charge collection and transfer rates,better crystallinity,and optimal phase separation.Therefore,OSCs based on PM6:Pz IC-4F as the active layer exhibited a PCE of 16.48%with an open circuit voltage(Voc)and energy loss of 0.880 V and 0.53 e V,respectively.Accordingly,this work demonstrated a promising approach by designing phenazine-based NFAs for achieving high-performance OSCs. 展开更多
关键词 organic solar cells Non-fullerene acceptor PHENAZINE Central core End group
下载PDF
Recent progress of hybrid cathode interface layer for organic solar cells
3
作者 Jianru Wang Dan Zhou +9 位作者 Zhentian Xu Yujie Pu Senmei Lan Fang Wang Feiyan Wu Bin Hu Yongfen Tong Ruizhi Lv Honglin Chu Lie Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期383-406,共24页
Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junctio... Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junction device had surpassed 19%.The cathode interface layer(CIL),by optimizing the connection between the active layer and the cathode electrode,has become a momentous part to strengthen the performances of the OSCs.Simultaneously,CIL is also indispensable to illustrating the working mechanism of OSCs and enhancing the stability of the OSCs.In this essay,hybrid CILs in OSCs have been summarized.Firstly,the advancement and operating mechanism of OSCs,and the effects and relevant design rules of CIL are briefly concluded;secondly,the significant influence of CIL on enhancing the stability and PCE of OSCs is presented;thirdly,the characteristics of organic hybrid CIL and organic-inorganic hybrid CIL are introduced.Finally,the conclusion and outlook of CIL are summarized. 展开更多
关键词 organic solar cells Theoperation mechanism organic hybrid cathode interface layer organic-inorganic hybrid CIL
下载PDF
Step‑by‑Step Modulation of Crystalline Features and Exciton Kinetics for 19.2%Efficiency Ortho‑Xylene Processed Organic Solar Cells
4
作者 Bosen Zou Weiwei Wu +10 位作者 Top Archie Dela Pena Ruijie Ma Yongmin Luo Yulong Hai Xiyun Xie Mingjie Li Zhenghui Luo Jiaying Wu Chuluo Yang Gang Li He Yan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期258-272,共15页
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.... With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future. 展开更多
关键词 organic solar cells Ternary design Solvent selection Flouro-methoxylated end group Morphological ordering
下载PDF
Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
5
作者 张凯彦 宋朋 +1 位作者 马凤才 李源作 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期575-587,共13页
The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valu... The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valuable for photosynthesis.However,there is little research on how to improve the efficiency of chlorophyll-based OSCs by matching chlorophyll derivatives with excellent non-fullerene acceptors to form heterojunctions.Therefore in this study we utilize a chlorophyll derivative,Ce_(6)Me_(3),as a donor material and investigate the performance of its heterojunction with acceptor materials.Through density functional theory,the photoelectric performances of acceptors,i ncluding the fullerene derivative PC_(71)BM and the terminal halogenated non-fullerene DTBCIC series,are compared in detail.It is found that DTBCIC-C1 has better planarity,light absorption,electron affinity,charge reorganization energy and charge mobility than others.Ce_(6)Me_(3) has good energy level matching and absorption spectral complementarity with the investigated acceptor molecules and also shows good electron donor properties.Furthermore,the designed Ce_(6)Me_(3)/DTBCIC interfaces have improved charge separation and reorganization rates(K_(CS)/K_(CR)) compared with the Ce_(6)Me_(3)/PC_(71)BM interface.This research provides a theoretical basis for the design of photoactive layer materials for chlorophyll-based OSCs. 展开更多
关键词 organic solar cells density functional theory chlorophyll derivative non-fullerene acceptors
下载PDF
Highly efficient and stable organic solar cells with SnO_(2)electron transport layer enabled by UV-curing acrylate oligomers
6
作者 Mwende Mbilo Du Hyeon Ryu +7 位作者 Seungjin Lee Muhammad Haris Julius Mwakondo Mwabora Robinson Juma Musembi Hang Ken Lee Sang Kyu Lee Chang Eun Song Won Suk Shin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期124-131,共8页
The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates f... The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability. 展开更多
关键词 organic solar cells SnO_(2) Surface defects Ultraviolet resins Stability Cross-linking oligomers Non-halogenated solvent
下载PDF
Enhancing efficiency and stability of organic solar cells through a simplified four-step synthesis of fully non-fused ring electron acceptor
7
作者 Chenyang Han Huanhuan Gao +7 位作者 Yanna Sun Yuanyuan Kan Zhaozhao Bi Wei Ma Yani Zhang Juan Antonio Zapien Yingguo Yang Ke Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期601-608,I0015,共9页
Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fu... Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fully non-fused ring electron acceptors(NFREAs,medium bandgap,i,e.,1,3-1,8 eV),namely PTR-2Cl and PTR-4Cl are synthesized with only four steps by using intramolecular noncovalent interaction central core,structured alkyl side chain orientation linking units and flanking with different electron-withdrawing end group.Among them,PTR-4C1 exhibits increased average electrostatic potential(ESP)difference with polymer donor,enhanced crystallinity and compactπ-πstacking compared with the control molecule PTR-2CI.As a result,the PTR-4Cl-based OSC achieved an impressive power conversion efficiency(PCE)of 14.72%,with a much higher open-circuit voltage(V_(OC))of 0.953 V and significantly improved fill factor(FF)of 0.758,demonstrating one of the best acceptor material in the top-performing fully NFREA-based OSCs with both high PCE and V_(OC).Notably,PTR-4Cl-based cells maintain a good T_80lifetime of its initial PCE after over 936 h under a continuous thermal annealing treatment and over1300 h T_(80)lifetime without encapsulation.This work provides a cost-effective design strategy for NFREAs on obtaining high V_(OC),efficient exciton dissociation,and ordered molecular packing and thus high-efficiency and stable OSCs. 展开更多
关键词 organic solar cells Fully non-fused ring acceptors End group engineering Morphology regulation High efficiency
下载PDF
π-Extended giant dimeric acceptor as a third component enables highly efficient ternary organic solar cells with efficiency over 19.2%
8
作者 Mengran Peng Haotian Wu +7 位作者 Liming Wu Jianhua Chen Ruijie Ma Qunping Fan Hua Tan Weiguo Zhu Hongxiang Li Junqiao Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期263-270,I0006,共9页
Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acce... Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acceptors have emerged as promising materials for achieving highly efficient and stable binary OSCs,while application as third component for ternary OSCs is limited.Here a novelπ-extended giant dimeric acceptor,GDF,is developed based on central Y series core fusion and rigid BDT as linker,and then incorporated into the state-of-the-art PM1:PC6 system to construct ternary OSCs.The GDF has a near planar backbone,resulting in increasedπ-conjugation,excellent crystallinity,and good electron transport capacity.When GDF is introduced into the PM1:PC6 system,it ensues in a cascade like the lowest unoccupied molecular orbitals(LUMO)energy level alignment,a complementary absorption band with PM1 and PC6,higher and balanced hole and electron mobility,slightly smaller domain size,and a higher exciton dissociation probability for PM1:PC6:GDF(1:1.1:0.1)blend film.As a consequence,the PM1:PC6:GDF(1:1.1:0.1)ternary OSC achieves a champion PCE of 19.22%,with a significantly higher open-circuit voltage and short-circuit current density,compared to 18.45%for the PM1:PC6(1:1.2)binary OSC.Our findings show that employing aπ-extended giant dimeric acceptor as a third component significantly improves the photovoltaic performance of ternary OSCs. 展开更多
关键词 Giant dimeric acceptor Third component Ternary organic solar cells
下载PDF
Alkyl chain modulation of asymmetric hexacyclic fused acceptor synergistically with wide bandgap third component for high efficiency ternary organic solar cells
9
作者 Shufang Li Huilan Guan +4 位作者 Can Zhu Chaoyuan Sun Qingya Wei Jun Yuan Yingping Zou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1713-1719,共7页
Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology... Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology of blend film,thereby improving charge mobility and reducing energy loss within the corresponding film.Notably,the PM6:BP4F-UU device exhibited a higher open-circuit voltage(V_(oc))of 0.878 V compared to the PM6:BP4F-HU device with a V_(oc)of 0.863 V.Further,a new wide bandgap SMA named BTP-TA was designed and synthesized as the third component to the PM6:BP4F-UU host binary devices,which showed an ideal complementary absorption spectrum in PM6:BP4F-UU system.In addition,BTP-TA can achieve efficient intermolecular energy transfer to BP4F-UU by fluorescence resonance energy transfer(FRET)pathway,due to the good overlap between the photoluminescence(PL)spectrum of BTP-TA and the absorption region of BP4F-UU.Consequently,ternary devices with 15wt%BTP-TA exhibits broader photon utilization,optimal blend morphology,and reduced charge recombination compared to the corresponding binary devices.Consequently,PM6:BP4F-UU:BTP-TA ternary device achieved an optimal power conversion efficiency(PCE)of 17.83%with simultaneously increased V_(oc)of 0.905 V,short-circuit current density(J_(sc))of 26.14 mA/cm^(2),and fill factor(FF)of 75.38%. 展开更多
关键词 asymmetric hexacyclic acceptor outside chain wide bandgap acceptor ternary organic solar cells
下载PDF
Molecular packing tuning via chlorinated end group enables efficient binary organic solar cells over 18.5%
10
作者 Yafeng Li Zhenyu Chen +1 位作者 Xingzheng Yan Ziyi Ge 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期196-203,共8页
Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,b... Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,based on the high-performance L8BO,we selected 3-ethylheptyl to substitute the inner chain of 2-ethylhexyl,obtaining the backbone of BON3.Then we introduced different halogen atoms of fluorine and chlorine on 2-(3-oxo-2,3-dihydro-1Hinden-1-ylidene)malononitrile end group(EG)to construct efficient NFAs named BON3-F and BON3-Cl,respectively.Polymer donor D18 was chosen to combine with two novel NFAs to construct OSC devices.Impressively,D18:BON3-Cl-based device shows a remarkable power conversion efficiency(PCE)of 18.57%,with a high open-circuit voltage(V_(OC))of 0.907 V and an excellent fill factor(FF)of 80.44%,which is one of the highest binary PCE of devices based on D18 as the donor.However,BON3-F-based device shows a relatively lower PCE of 17.79%with a decreased FF of 79.05%.The better photovoltaic performance is mainly attributed to the red-shifted absorption,higher electron and hole mobilities,reduced charge recombination,and enhanced molecular packing in the D18:BON3-Cl films.Also,we performed stability tests on two binary systems;the D18:BON3-Cl and D18:BON3-F devices maintain 88.1%and 85.5%of their initial efficiencies after 169 h of storage at 85°C in an N2-filled glove box,respectively.Our work demonstrates the importance of selecting halogen atoms on EG and provides an efficient binary system of D18:BON3-Cl for further improvement of PCE. 展开更多
关键词 binary organic solar cell chlorinated end group molecular packing
下载PDF
4‑Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22%Efficiency 被引量:2
11
作者 Ling Liu Hanrui Xiao +10 位作者 Ke Jin Zuo Xiao Xiaoyan Du Keyou Yan Feng Hao Qinye Bao Chenyi Yi Fangyang Liu Wentao Wang Chuantian Zuo Liming Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期172-181,共10页
After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are recei... After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter. 展开更多
关键词 4-Terminal tandem solar cells Inorganic perovskite solar cells organic solar cells SEMITRANSPARENT Drop-coating
下载PDF
Solid Additive-Assisted Layer-by-Layer Processing for 19%Efficiency Binary Organic Solar Cells 被引量:2
12
作者 Guanyu Ding Tianyi Chen +9 位作者 Mengting Wang Xinxin Xia Chengliang He Xiangjun Zheng Yaokai Li Di Zhou Xinhui Lu Lijian Zuo Zhikang Xu Hongzheng Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期16-29,共14页
Morphology is of great significance to the performance of organic solar cells(OSCs),since appropriate morphology could not only promote the exciton dissociation,but also reduce the charge recombination.In this work,we... Morphology is of great significance to the performance of organic solar cells(OSCs),since appropriate morphology could not only promote the exciton dissociation,but also reduce the charge recombination.In this work,we have developed a solid additive-assisted layer-by-layer(SAA-LBL)processing to fabricate high-efficiency OSCs.By adding the solid additive of fatty acid(FA)into polymer donor PM6 solution,controllable pre-phase separation forms between PM6 and FA.This intermixed morphology facilitates the diffusion of acceptor Y6 into the donor PM6 during the LBL processing,due to the good miscibility and fast-solvation of the FA with chloroform solution dripping.Interestingly,this results in the desired morphology with refined phase-separated domain and vertical phase-separation structure to better balance the charge transport/collection and exciton dissociation.Consequently,the binary single junction OSCs based on PM6:Y6 blend reach champion power conversion efficiency(PCE)of 18.16%with SAA-LBL processing,which can be generally applicable to diverse systems,e.g.,the PM6:L8-BO-based devices and thick-film devices.The efficacy of SAA-LBL is confirmed in binary OSCs based on PM6:L8-BO,where record PCEs of 19.02%and 16.44%are realized for devices with 100 and 250 nm active layers,respectively.The work provides a simple but effective way to control the morphology for high-efficiency OSCs and demonstrates the SAA-LBL processing a promising methodology for boosting the industrial manufacturing of OSCs. 展开更多
关键词 organic solar cells Fatty acid Solid additive Layer-by-layer Vertical phase separation
下载PDF
Synergistic Optimization of Buried Interface by Multifunctional Organic-Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells 被引量:2
13
作者 Heng Liu Zhengyu Lu +7 位作者 Weihai Zhang Hongkang Zhou Yu Xia Yueqing Shi Junwei Wang Rui Chen Haiping Xia Hsing-Lin Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期505-519,共15页
For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is ch... For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h. 展开更多
关键词 Perovskite solar cells organic Inorganic complexes Multifunctional interfacial material Buried interface layer
下载PDF
Pinning energies of organic semiconductors in high-efficiency organic solar cells 被引量:1
14
作者 Xian’e Li Qilun Zhang +1 位作者 Xianjie Liu Mats Fahlman 《Journal of Semiconductors》 EI CAS CSCD 2023年第3期52-61,共10页
With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning ener... With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning energies,one of the critical characteristics of the material to predict the energy level alignment(ELA)at either electrode/organic or organic/organic interfaces,are urgently needed for the new materials.Here,pinning energies of a wide variety of newly developed donors and nonfullerene acceptors(NFAs)are measured through ultraviolet photoelectron spectroscopy.The positive pinning energies of the studied donors and the negative pinning energies of NFAs are in the same energy range of 4.3−4.6 eV,which follows the design rules developed for fullerene-based OSCs.The ELA for metal/organic and inorganic/organic interfaces follows the predicted behavior for all of the materials studied.For organic-organic heterojunctions where both the donor and the NFA feature strong intramolecular charge transfer,the pinning energies often underestimate the experimentally obtained interface vacuum level shift,which has consequences for OSC device performance. 展开更多
关键词 organic semiconductors organic solar cells pinning energies integer charge transfer interface dipoles
下载PDF
Green‑Solvent Processed Blade‑Coating Organic Solar Cells with an Efficiency Approaching 19%Enabled by Alkyl‑Tailored Acceptors 被引量:1
15
作者 Hairui Bai Ruijie Ma +23 位作者 Wenyan Su Top Archie Dela Pea Tengfei Li Lingxiao Tang Jie Yang Bin Hu Yilin Wang Zhaozhao Bi Yueling Su Qi Wei Qiang Wu Yuwei Duan Yuxiang Li Jiaying Wu Zicheng Ding Xunfan Liao Yinjuan Huang Chao Gao Guanghao Lu Mingjie Li Weiguo Zhu Gang Li Qunping Fan Wei Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期449-462,共14页
Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE dr... Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development. 展开更多
关键词 Alkyl-tailored guest acceptors Blade-coating Green solvent processing Stability organic solar cells
下载PDF
Metal-organic frameworks with mixed-ligands strategy as heterogeneous nucleation center to assist crystallization for efficient and stable perovskite solar cells 被引量:1
16
作者 Yayu Dong Shuang Gai +9 位作者 Jian Zhang Ruiqing Fan Boyuan Hu Wei Wang Wei Cao Jiaqi Wang Ke Zhu Debin Xia Lin Geng Yulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期1-10,I0001,共11页
Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal... Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs. 展开更多
关键词 Perovskite solar cells Metal organic frameworks Mixed ligands strategy Passivation Stability
下载PDF
Recent progress on efficient perovskite/organic tandem solar cells
17
作者 Rongbo Wang Meidouxue Han +6 位作者 Ya Wang Juntao Zhao Jiawei Zhang Yi Ding Ying Zhao Xiaodan Zhang Guofu Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期158-172,I0006,共16页
The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promi... The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promising for constructing efficient TSCs. Currently, TSCs based on perovskite have been extensively studied. Besides, the performance of organic solar cells has been greatly improved recently due to the wider and more efficient spectral utilization. Accordingly, research on perovskite/organic TSCs has garnered significant attention. It has potential application advantages in emerging fields such as wearable devices by virtue of flexibility. In addition, orthogonal solvents can be adopted to realize the separate preparation of subcells with the solution method, which greatly reduces fabrication complexity;moreover, fabrication with less equipment significantly cuts down the device cost. Meanwhile, organics with more adjustability on the optoelectronic properties provide more tuning strategies for high-performance perovskite/organic TSCs. However, comprehensive and timely reviews on the perovskite/organic TSCs are deficient. Therefore, we expect to accomplish a review on this innovative TSCs to facilitate researchers with a deeper understanding of perovskite/organic TSCs. Herein, we firstly review the significant progress of perovskite and organic solar cells. Then, current achievements of perovskite/organic TSCs are summarized and introduced with a particular focus on the device structure design. Finally, we discuss existential challenges and propose effective strategies for future engineering. 展开更多
关键词 Tandem solar cells PEROVSKITE organic solarcells Interconnecting layer
下载PDF
π-Extension and chlorination of non-fullerene acceptors enable more readily processable and sustainable high-performance organic solar cells
18
作者 Ning Su Jianhua Chen +6 位作者 Mengran Peng Guoping Li Robert M.Pankow Ding Zheng Junqiao Ding Antonio Facchetti Tobin J.Marks 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期321-329,共9页
Organic solar cells(OSCs)processed without halogenated solvents and complex treatments are essential for future commercialization.Herein,we report three novel small molecule acceptors(NFAs)consisting of a Y6-like core... Organic solar cells(OSCs)processed without halogenated solvents and complex treatments are essential for future commercialization.Herein,we report three novel small molecule acceptors(NFAs)consisting of a Y6-like core but withπ-extended naphthalene with progressively more chlorinated end-capping groups and a longer branched chain on the Nitrogen atom.These NFAs exhibit good solubilities in nonchlorinated organic solvents,broad optical absorptions,closeπ-πstacking distances(3.63–3.84A),and high electron mobilities(~10^(-3)cm^(2)V^(-1)s^(-1)).The o-xylene processed and as-cast binary devices using PM6 as the donor polymer exhibit a PCE increasing upon progressive chlorination of the naphthalene end-capping group from 8.93%for YN to 14.38%for YN-Cl to 15.00%for YN-2Cl.Furthermore similarly processed ternary OSCs were fabricated by employing YN-Cl and YN-2Cl as the third component of PM6:CH1007 blends(PCE=15.75%).Compared to all binary devices,the ternary PM6:CH1007:YN-Cl(1:1:0.2)and PM6:CH1007:YN-2Cl(1:1:0.2)cells exhibit significantly improved PCEs of 16.49%and15.88%,respectively,which are among the highest values reported to date for non-halogenated solvent processed OSCs without using any additives and blend post-deposition treatments. 展开更多
关键词 Non-fullerene acceptors Non-chlorinated organic solvents organic solar cells
下载PDF
Predicting power conversion efficiency of binary organic solar cells based on Y6 acceptor by machine learning
19
作者 Qiming Zhao Yuqing Shan +4 位作者 Chongchen Xiang Jinglun Wang Yingping Zou Guangjun Zhang Wanqiang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期139-147,I0004,共10页
Organic solar cells(OSCs)are a promising photovoltaic technology for practical applications.However,the design and synthesis of donor materials molecules based on traditional experimental trial-anderror methods are of... Organic solar cells(OSCs)are a promising photovoltaic technology for practical applications.However,the design and synthesis of donor materials molecules based on traditional experimental trial-anderror methods are often complex and expensive in terms of money and time.Machine learning(ML)can effectively learn from data sets and build reliable models to predict the performance of materials with reasonable accuracy.Y6 has become the landmark high-performance OSC acceptor material.We collected the power conversion efficiency(PCE)of small molecular donors and polymer donors based on the Y6 acceptor and calculated their molecule structure descriptors.Then we used six types of algorithms to develop models and compare the predictive performance with the coefficient of determination(R^(2))and Pearson correlation coefficient(r)as the metrics.Among them,decision tree-based algorithms showed excellent predictive capability,especially the Gradient Boosting Regression Tree(GBRT)models based on small molecular donors and polymer donors exhibited that the values of R2are 0.84 and 0.69 for the testing set,respectively.Our work provides a strategy to predict PCEs rapidly,and discovers the influence of the descriptors,thereby being expected to screen high-performance donor material molecules. 展开更多
关键词 Machine learning Binary organic solar cells Y6 PCE
下载PDF
Highly efficient organic solar cells with improved stability enabled by ternary copolymers with antioxidant side chains
20
作者 Ao Song Qiri Huang +5 位作者 Chunyang Zhang Haoran Tang Kai Zhang Chunchen Liu Fei Huang Yong Cao 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期48-56,共9页
The stability of organic solar cells(OSCs)remains a major concern for their ultimate industrialization due to the photo,oxygen,and water susceptibility of organic photoactive materials.Usually,antioxidant additives ar... The stability of organic solar cells(OSCs)remains a major concern for their ultimate industrialization due to the photo,oxygen,and water susceptibility of organic photoactive materials.Usually,antioxidant additives are blended as radical scavengers into the active layer.However,it will induce the intrinsic morphology instability and adversely affect the efficiency and long-term stability.Herein,the antioxidant dibutylhydroxytoluene(BHT)group has been covalently linked onto the side chain of benzothiadiazole(BT)unit,and a series of ternary copolymers D18-Cl-BTBHTx(x=0,0.05,0.1,0.2)with varied ratio of BHT-containing side chains have been synthesized.It was found that the introduction of BHT side chains would have a negligible effect on the photophysical properties and electronic levels,and the D18-Cl-BTBHT0.05:Y6-based OSC achieved the highest power conversion efficiency(PCE)of 17.6%,which is higher than those based active layer blended with BHT additives.More importantly,the unencapsulated device based on D18-Cl-BTBHTx(x=0.05,0.1,0.2)retained approximately 50%of the initial PCE over 30 hours operation under ambient conditions,significantly outperforming the control device based on D18-Cl(90%degradation in PCE after 30 h).This work provides a new structural design strategy of copolymers for OSCs with simultaneously improved efficiency and stability. 展开更多
关键词 organic solar cells ternary copolymers antioxidant side chain PHOTOSTABILITY
下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部