期刊文献+
共找到196篇文章
< 1 2 10 >
每页显示 20 50 100
Contact-Size-Dependent Cutoff Frequency of Bottom-Contact Organic Thin Film Transistors
1
作者 孙静 王宏 +2 位作者 王湛 吴士伟 马晓华 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第10期110-112,共3页
The contact-size-dependent characteristic of cutoff frequency fT in bottom-contact organic thin film transistors (OTFTs) is studied. The effects of electrode thickness, field-effect mobility, channel length and gate... The contact-size-dependent characteristic of cutoff frequency fT in bottom-contact organic thin film transistors (OTFTs) is studied. The effects of electrode thickness, field-effect mobility, channel length and gate-source voltage on the contact length (source and drain electrodes' length) related contact resistance of bottom-contact OTFTs are performed with a modified transmission line model. It is found that the contact resistance increases dramatically when the contact length is scaled down to 20O nm. With the help of the contact length related contact resistance, contact-size-dependent fT Of bottom-contact OTFTs is studied and it is found that fr increases with the decrease of the contact length in bottom-contact OTFTs. 展开更多
关键词 Contact-Size-Dependent Cutoff Frequency of Bottom-Contact organic Thin film transistors LENGTH
下载PDF
Mixed P3HT/PCBM Organic Thin-Film Transistors: Relation between Morphology and Electrical Characteristics
2
作者 Khairul Anuar Mohamad Afishah Alias +3 位作者 Ismail Saad Bablu Kumar Gosh Katsuhiro Uesugi Hisashi Fukuda 《Journal of Chemistry and Chemical Engineering》 2014年第5期476-481,共6页
The mixed P3HT (poly(3-hexylthiophene)) and [6,6]-PCBM (phenyl C61-butyric acid methyl ester) organic thin films were investigated for electronic structure using UV-Vis spectrophotometer and PESA (photo-electro... The mixed P3HT (poly(3-hexylthiophene)) and [6,6]-PCBM (phenyl C61-butyric acid methyl ester) organic thin films were investigated for electronic structure using UV-Vis spectrophotometer and PESA (photo-electron spectroscopy in air). Furthermore, ESR (electron spin resonance) and AFM (atomic force microscopy) were used to investigate the surface morphology and molecular orientation, respectively. ESR analysis indicated the molecular orientation of the P3HT crystalline in the blend thin films, which the crystalline oriented normal to the substrate with distribution of 35°. AFM images indicated that the surface morphology of P3HT film was affected by the presence of PCBM nanoparticles. Solution-processed OTFTs (organic thin-film transistors) based on P3HT/PCBM blend thin film in a top source-drain contact structure was fabricated, and the electrical characteristics of the devices were also investigated. A unipolar property with p-channel characteristics were obtained in glove box measurement. 展开更多
关键词 organic semiconductor P3HT PCBM P3HT/PCBM blend thin film organic thin-film transistor.
下载PDF
Performance improvement in pentacene organic thin film transistors by inserting a C_(60) ultrathin layer
3
作者 孙钦军 徐征 +2 位作者 赵谡玲 张福俊 高利岩 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期596-600,共5页
The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source-drain electrode and pentacene to reduce the contact resistance. By a 3 nm C6... The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source-drain electrode and pentacene to reduce the contact resistance. By a 3 nm C60 modification, the injection barrier is lowered and the contact resistance is reduced. Thus, the field-effect mobility increases from 0.12 to 0.52 cm2/(V.s). It means that inserting a C60 ultra thin layer is a good method to improve the organic thin film transistor (OTFT) performance. The output curve is simulated by using a charge drift model. Considering the contact effect, the field effect mobility is improved to 1.15 cm2/(V-s). It indicates that further reducing the contact resistance of OTFTs should be carried out. 展开更多
关键词 organic thin film transistors field effect mobility contact effect charge drift
下载PDF
Application of graphene vertical field effect to regulation of organic light-emitting transistors
4
作者 Hang Song Hao Wu +2 位作者 Hai-Yang Lu Zhi-Hao Yang Long Ba 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期473-478,共6页
The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabric... The luminescence intensity regulation of organic light-emitting transistor(OLED)device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET)and OLED.In this paper,we fabricate and characterize the graphene vertical field-effect transistor with gate dielectric of ion-gel film,confirming that its current switching ratio reaches up to 102.Because of the property of high light transmittance in ion-gel film,the OLED device prepared with graphene/PEDOT:PSS as composite anode exhibits good optical properties.We also prepare the graphene vertical organic light-emitting field effect transistor(GVOLEFET)by the combination of GVFET and graphene OLED,analyzing its electrical and optical properties,and confirming that the luminescence intensity can be significantly changed by regulating the gate voltage. 展开更多
关键词 graphene vertical field effect transistor organic light-emitting transistor ion-gel film gate voltage regulation
下载PDF
Top Contact Pentacene Organic Thin Film Field Effect Transistors
5
作者 ZHANGSu-mei SHIJia-wei +4 位作者 SHIYing-xue GUOShu-xu LIUMing-da MADong-ge CHENJiang-shan 《Semiconductor Photonics and Technology》 CAS 2004年第4期265-267,共3页
Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly dop... Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly doped Si as the gate electrode and substrate with plasma-enhanced chemical vapor deposited (PECVD) silicon nitride as gate dielectric. Pentacene thin films were deposited by thermal evaporation on dielectrics as the active layer, then RF-magnetron sputtered amorphous aluminium was used as the source and drain contacts. Measurement results show that field effect mobility and threshold voltage are 0.043 cm2/(V·s) and 12.6 V, respectively, and on-off current ratio is nearly 1×103. 展开更多
关键词 organic thin film PENTACENE transistors
下载PDF
Temperature Dependence of Electrical Properties of Organic Thin Film Transistors Based on pn Heterojuction and Their Applications in Temperature Sensors
6
作者 Rongbin Ye Koji Ohta Mamoru Baba 《Journal of Computer and Communications》 2016年第5期10-15,共6页
Organic thin film transistors based on an F<sub>16</sub>CuPc/α6T pn heterojunction have been fabricated and analyzed to investigate the temperature dependence of electrical properties and apply in tempera... Organic thin film transistors based on an F<sub>16</sub>CuPc/α6T pn heterojunction have been fabricated and analyzed to investigate the temperature dependence of electrical properties and apply in temperature sensors. The mobility follows a thermally activated hopping process. At temperatures over 200 K, the value of thermal activation energy (E<sub>A</sub>) is 40. 1 meV, similar to that of the single-layer device. At temperatures ranging from 100 to 200 K, we have a second regime with a much lower E<sub>A</sub> of 16.3 meV, where the charge transport is dominated by shallow traps. Similarly, at temperatures above 200 K, threshold voltage (V<sub>T</sub>) increases linearly with decreasing temperature, and the variations of V<sub>T</sub> of 0.185 V/K is larger than the variation of V<sub>T</sub> (~0.020 V/K) in the single layer devices. This result is due to the interface dipolar charges. At temperatures ranging from 100 K to 200 K, we have a second regime with much lower variations of 0.090 V/K. By studying gate voltage (V<sub>G</sub>)-dependence temperature variation factor (k), the maximum value of k (~0.11 dec/K) could be obtained at V<sub>G</sub> = 5 V. Furthermore, the pn heterojunction device could be characterized as a temperature sensor well working at low operating voltages. 展开更多
关键词 organic Thin film transistors pn Heterojunction Temperature Dependence Temperature Sensors
下载PDF
Research on the electrical characteristics of an organic thin-film field-effect transistor based on alternating-current resistance
7
作者 陈跃宁 徐征 +4 位作者 赵谡玲 尹飞飞 张成文 焦碧媛 董宇航 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期385-388,共4页
In this article, an organic thin-film field-effect transistor (OTFFET) with top-gate and bottom-contact geometry based on pentacene as the active layer is fabricated. The experimental data of the I-V are obtained fr... In this article, an organic thin-film field-effect transistor (OTFFET) with top-gate and bottom-contact geometry based on pentacene as the active layer is fabricated. The experimental data of the I-V are obtained from the OTFFET device. The alternating-current (AC) resistance value of the OTFFET device is calculated using the derivation method from the experimental data, and the AC resistance trend curves of the OTFFET device are obtained with the region fitting method. We analyse the characteristics of the OTFFET device with an AC resistance trend curve. To discover whether it has a high resistance, it is proposed to judge the region of the source/drain voltage (VDs) less than the transition voltage, thereby determining whether the contact between the metal electrode and the organic semiconductor layer of the OTFFET device is Ohmic or non-Ohmic. The theoretical analysis shows that the field-effect mobility and the AC resistance are in reverse proportion. Therefore, we point out that reducing AC resistance is necessary if field-effect mobility is to be improved. 展开更多
关键词 organic thin-film field-effect transistor alternating-current resistance Ohmic contact
下载PDF
Study on characteristics of a double-conductible channel organic thin-film transistor with an ultra-thin hole-blocking layer
8
作者 袁广才 徐征 +4 位作者 赵谡玲 张福俊 许娜 田雪雁 徐叙瑢 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3990-3994,共5页
The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7- diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a ... The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7- diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a BCP interlayer was inserted into the middle of the pentacene active layer. This paper obtains a fire-new transport mode of an OTFT device with double-conductible channels. The accumulation and transfer of the hole carriers arc limited by the BCP interlayer in the vertical region of the channel. A huge amount of carriers is located not only at the interface between pentacene and the gate insulator, but also at the two interfaces of pentacene/BCP interlayer and pentacene/gate insulator, respectively. The results suggest that the BCP interlayer may be useful to adjust the hole accumulation and transfer, and can increase the hole mobility and output current of OTFTs. The TC-OTFTs with a BCP interlayer at VDS = --20 V showed excellent hole mobility μFE and threshold voltage VTH of 0.58 cm^2/(V-s) and -4.6 V, respectively. 展开更多
关键词 organic thin-film transistor ultra-thin hole-blocking layer double-conductible channels
下载PDF
Inorganic and Organic Solution-Processed Thin Film Devices 被引量:6
9
作者 Morteza Eslamian 《Nano-Micro Letters》 SCIE EI CAS 2017年第1期16-38,共23页
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materia... Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution. 展开更多
关键词 organic electronics Photovoltaics Thin film transistors Thermoelectric devices organic light-emitting diodes Smart materials Sensors and actuators Solution-processed methods
下载PDF
Preparation and operation characteristics of organic semiconductor transistor using thin film Al gate and copper phthalocyanine 被引量:1
10
作者 赵洪 王东兴 +3 位作者 梁海峰 桂太龙 殷景华 王喧 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期675-677,共3页
The organic static induction transistors (OSITs) are fabricated by the method of evaporating and plating in a vacuum with copper phthalocyanine (CuPc) dye, and has a five layered structure of Au/CuPc/Al/CuPc/Au. The e... The organic static induction transistors (OSITs) are fabricated by the method of evaporating and plating in a vacuum with copper phthalocyanine (CuPc) dye, and has a five layered structure of Au/CuPc/Al/CuPc/Au. The experiment reveals that OSITs have obtained a low driving voltage, high current density and high switch speed such as I_ DS = 1.2×10 -6 A/mm2, and the degree of 1 000 Hz. The OSITs have excellent operation characteristics of typical static induction transistors. 展开更多
关键词 thin film transistor copper phthaloeyanine organic semiconductor vacuum evaporate
下载PDF
Studying the operation characteristics and structure of vertical channel copper-phthalocyanine organic semiconductor transistor
11
作者 朱敏 宋明歆 +4 位作者 桂太龙 王喧 殷景华 王东兴 赵洪 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第4期378-382,共5页
The creation of Au/CuPe/Al/CuPc/strueture is a perpendicular type electricity found in the channel of organic static induction transistor. In the following we analyze transistor operation characteristics and machine s... The creation of Au/CuPe/Al/CuPc/strueture is a perpendicular type electricity found in the channel of organic static induction transistor. In the following we analyze transistor operation characteristics and machine structural relation. The results express that the transistor drives the voltage low and has no-saturation currentvoltage characteristics. Its operation characteristics are dependant on gate bias voltage and the construction of the aluminum eleetrode. The vertical ehannel of organic static induction transistor (OSIT) , with structure of Au/CuPc/Al/CuPc/ Cu, has been determined. According to the test results, the relation of its operation characteristics aud device structure was analyzed. The results show that this transistor has a low driving voltage and unsaturation Ⅰ-Ⅴ characteristies. Its operation characteristics are dependant on gate bias voltage and the structure of the aluminum electrode. 展开更多
关键词 thin film transistor copper phthalocyanine organic semiconductor
下载PDF
Influence of Temperature and Pentacene Thickness on the Electrical Parameters in Top Gate Organic Thin Film Transistor
12
作者 Abdoul Kadri Diallo El Hadji Babacar Ly +3 位作者 Diene Ndiaye Diouma Kobor Marcel Pasquinelli Abdou Karim Diallo 《Advances in Materials Physics and Chemistry》 2017年第3期85-98,共14页
In this contribution, we report on the effect of pentacene thickness and temperature on the performance of top gate transistors. We first investigated the temperature dependence of the transport properties in the temp... In this contribution, we report on the effect of pentacene thickness and temperature on the performance of top gate transistors. We first investigated the temperature dependence of the transport properties in the temperature range of 258 K - 353 K. The electrical characteristics showed that the threshold voltage (VT) and the onset voltage (Von) remain unchanged. However, the subthreshold current (Ioff), the on-current (Ion) and the field effect mobility (μ) are highly affected with a slight deterioration of subthreshold slope. We observed Arrhenius-like behavior suggesting a thermally activated mobility with an activation energy EA = 68 meV. Moreover the dependence of the charge carrier mobility on the organic semiconductor thickness has also been studied. The mobility decreased as the pentacene thickness increases whereas the threshold voltage and Ioff current remain minimally affected. In order to understand the transport properties and in view to put in light morphology peculiarities of pentacene, AFM images were performed. It turns out that the pentacene grain sizes are smaller and disorganized as the film thickness increases, and charge carriers are more prone to be trapped, leading to decrease the field effect mobility and the Ion current. The devices were also tested under bias stress and the transistors with low thicknesses exhibited a relatively good electrical stability compared to those with high pentacene thicknesses. This work points out the influence of temperature, semiconductor thickness and bias stress effect on the device performance and stability of transistor using top gate configuration. 展开更多
关键词 PENTACENE organic transistor Top Gate Thin film transistor Bias Stress PARYLENE
下载PDF
Highly crystalline,highly stable n-type ultrathin crystalline films enabled by solution blending strategy toward organic single-crystal electronics
13
作者 Yang Liu Shuyu Li +4 位作者 Yihan Zhang Xiaoting Zhu Fangxu Yang Fei Jiao Wenping Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期321-325,共5页
The development of n-type semiconductor is still far behind that of p-type semiconductor on account of the challenges in enhancing carrier mobility and environmental stability.Herein,by blending with the polymers,n-ty... The development of n-type semiconductor is still far behind that of p-type semiconductor on account of the challenges in enhancing carrier mobility and environmental stability.Herein,by blending with the polymers,n-type ultrathin crystalline thin film was successfully prepared by the method of meniscus-guided coating.Remarkably,the n-type crystalline films exhibit ultrathin thickness as low as 5 nm and excellent mobility of 1.58 cm^(2) V^(-1) s^(-1),which is outstanding in currently reported organic n-type transistors.Moreover,the PS layer provides a high-quality interface with ultralow defect which has strong resistance to external interference with excellent long-term stability,paving the way for the application of n-type transistors in logic circuits. 展开更多
关键词 n-type organic field effect transistors Ultrathin film HIGH-PERFORMANCE Composites
原文传递
Experimental analysis of operating characteristics of organic semiconductor static induction transistor
14
作者 薛严冰 王东兴 《Journal of Shanghai University(English Edition)》 CAS 2006年第4期352-356,共5页
The organic static induction transistor (OSIT) fabricated with organic semiconductor material copper-phthalocyanine (CuPc) is discussed in the paper. It has Schottky Gate electrode and sandwich structure of Au/CuP... The organic static induction transistor (OSIT) fabricated with organic semiconductor material copper-phthalocyanine (CuPc) is discussed in the paper. It has Schottky Gate electrode and sandwich structure of Au/CuPc/Al/CuPc/Au/glass. The operation mechanism of the device is studied on the physical model with practical parameters. Potential distribution and field intensity distribution in the conduction channel are computed by using finite-element method. By processing static experimental data with some mathematic tools, the V-I expression of CuPc/Al Schottky Gate is obtained and it is verified that OSIT has insaturation current property along with the increase of Drain bias voltage. By using AC small signal circuit model and appropriate numerical simulation method, the dynamic operating characteristics are investigated, and some influenced factors are analyzed. 展开更多
关键词 thin film transistor organic static induction transistor numerical simulation.
下载PDF
Stretchable organic electrochemical transistors via threedimensional porous elastic semiconducting films for artificial synaptic applications 被引量:6
15
作者 Yujie Peng Lin Gao +7 位作者 Changjian Liu Jinyi Deng Miao Xie Libing Bai Gang Wang Yuhua Cheng Wei Huang Junsheng Yu 《Nano Research》 SCIE EI CSCD 2023年第7期10206-10214,共9页
Neuromorphic computing targets realizing biomimetic or intelligence systems capable of processing abundant tasks in parallel analogously to our brain,and organic electrochemical transistors(OECTs)that rely on the mixe... Neuromorphic computing targets realizing biomimetic or intelligence systems capable of processing abundant tasks in parallel analogously to our brain,and organic electrochemical transistors(OECTs)that rely on the mixed ionic-electronic synergistic couple possess significant similarity to biological systems for implementing synaptic functions.However,the lack of reliable stretchability for synaptic OECTs,where mechanical deformation occurs,leads to consequent degradation of electrical performance.Herein,we demonstrate stretchable synaptic OECTs by adopting a three-dimensional poly(3-hexylthiophene)(P3HT)/styrene-ethylene-butylene-styrene(SEBS)blend porous elastic film for neuromorphic computing.Such architecture shows the full capability to emulate biological synaptic behaviors.Adjusting the accumulated layer numbers of porous film enables tunable OECT output and hysteresis,resulting in transition in plasticity.Especially,with a trilayer porous film,large-scale conductance and hysteresis are endorsed for efficient mimicking of memory-dependent synapse behavior.Benefitted from the interconnected three-dimensional porous structures,corresponding stretchable synaptic OECTs exhibit excellent mechanical robustness when stretched at a 30%strain,and maintain reliable electrical characteristics after 500 stretching cycles.Furthermore,near-ideal weight updates with near-zero nonlinearities,symmetricity in long-term potentiation(LTP)and depression,and applications for image simulation are validated.This work paves a universal design strategy toward highperformance stretchable neuromorphic computing architecture and could be extended to other flexible/stretchable electronics. 展开更多
关键词 organic electrochemical transistors(OECTs) artificial synapses porous films flexible electronics neuromorphic computing
原文传递
Tetramethylammonium Iodide Additive for Enhancing the Charge Carrier Mobilities of Diketopyrrolopyrrole-Based Conju-gated Polymer in Ambipolar Organic Field-Effect Transistors
16
作者 Waner He Qian Liu +5 位作者 Sultan Otep Hidetoshi Matsumoto Sergei Manzhos Prashant Sonar Aung Ko Ko Kyaw Tsuyoshi Michinobu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第9期1028-1036,共9页
Diketopyrrolopyrrole(DPP)is one of the most promising building blocks for constructing polymer semiconductors with high charge-carrier mobilities in organic field-effect transistors(OFETs).In this study,a novel DPP-ba... Diketopyrrolopyrrole(DPP)is one of the most promising building blocks for constructing polymer semiconductors with high charge-carrier mobilities in organic field-effect transistors(OFETs).In this study,a novel DPP-based conjugated polymer,PDPPy-BDD,was designed and synthesized.The ambipolar field-effect transistor characteristics were realized with the average hole and electron mobilities of 3.5×10^(-3)and 3.07×10^(-2)cm^(2)V^(-1)s^(-1),respectively.Both the hole and electron mobilities could be successfully en-hanced by using a tetramethylammonium iodide(NMe4l)additive.Such an enhancement was attributed to the formation of stronger interchainπ-πstackings,the weakening of the face-on packing orientation in the thin film state,and the higher channel conductivi-ties in the OFETs. 展开更多
关键词 DIKETOPYRROLOPYRROLE Pyridine Charge transport Conjugated polymers organic field-effect transistors Semiconductors Tetramethylammonium iodide Thin films
原文传递
Asymmetric side-chain engineering of organic semiconductor for ultrasensitive gas sensing
17
作者 Xiaoying Ma Xiaojuan Dai +7 位作者 Lanyi Xiang Jiajun Chang Danfeng Zhi Haozhen Zhao Zhenjie Ni Ye Zou Xike Gao Fengjiao Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期428-433,共6页
Molecular structure of organic semiconductor plays a critical role in determining the performance and functionality of organic electronic devices,by optimizing the electrical,optical and physicochemical properties.Sub... Molecular structure of organic semiconductor plays a critical role in determining the performance and functionality of organic electronic devices,by optimizing the electrical,optical and physicochemical properties.Substituted alkyl chains are fundamental units in tailering the solubility and assemblability,among which the asymmetric properties have been reported as key element for controlling the packing motifs and intrinsic charge transport.Here,we expanded the scope of molecular asymmetry dependent sensing features based on a new series of naphthalene diimides(NDI)-based derivatives substituted with a same branching alkyl chain but various linear-shaped alkyl chains(Cn-).A clear molecular stacking change,from head-to-head bilayer to head-to-tail monolayer packing model,is observed based on the features of anisotropic molecular interactions with the change in the chain length.Most importantly,a unique LUMO level shift of 0.17 eV is validated for NDI-PhC4,providing a record sensitivity up to 150%to 0.01 ppb ammonia,due to the desired molecular reactivity and device amplification properties.These results indicate that asymmetric side-chain engineering opens a route for breath healthcare. 展开更多
关键词 organic thin film transistor Asymmetric side chain Gas sensing Molecular stacking Energy level manipulating
原文传递
n-Channel Organic Transistors Processed from Halogen-Free Solvents: Solvent Effect on Thin-Film Morphology and Charge Transport 被引量:1
18
作者 Simin Gao Yonghui Hu +1 位作者 Zhiming Duan Xike Gao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2016年第7期689-695,共7页
Non-chlorinated solvents are highly preferable for organic electronic processing due to their environmentally friendly characteristics. Four different halogen-free solvents, tetrafuran, toluene, meta-xylene and 1,2,4-... Non-chlorinated solvents are highly preferable for organic electronic processing due to their environmentally friendly characteristics. Four different halogen-free solvents, tetrafuran, toluene, meta-xylene and 1,2,4-trimethyl- benzene, were selected to fabricate n-channel organic thin film transistors (OTFTs) based on 3-hexylundecyl sub- stituted naphthalene diimides fused with (1,3-dithiol-2-ylidene)malononitrile groups (NDI3HU-DTYM2). The OTFTs based on NDI3HU-DTYM2 showed electron mobility of up to 1.37 cm2-V-1·s -1 under ambient condition. This is among the highest device performance for n-channel OTFTs processed from halogen-free solvents. The dif- ferent thin-film morphologies, from featureless low crystalline morphology to well-aligned nanofibres, have a great effect on the device performance. These results might shed some light on solvent selection and the resulting solution process for organic electronic devices. 展开更多
关键词 organic thin film transistor non-chlorinated solvents electron transport
原文传递
Properties of C_(60) thin film transistor based on polystyrene
19
作者 周建林 牛巧利 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期524-529,共6页
This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C6... This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C60 film were carefully investigated. By choosing different source/drain electrodes, a device with good performance can be obtained. The highest electron field effect mobility about 1.15 cm2/(V. s) could reach when Barium was introduced as electrodes. Moreover, the C60 transistor shows a negligible 'hysteresis effect' contributed to the hydroxyl-free of insulator. The result suggests that polymer dielectrics are promising in applications among n-type organic transistors. 展开更多
关键词 organic thin film transistors N-TYPE C60 POLYSTYRENE
下载PDF
Control of polymorphism in solution-processed organic thin film transistors by self-assembled monolayers
20
作者 Danqing Liu Xu Xiao +4 位作者 Zikai He Jingjuan Tan Lei Wang Bowen Shan Qian Miao 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第9期1221-1229,共9页
Polymorphism of organic semiconductor films is of key importance for the performance of organic thin film transistors(OTFTs).Herein,we demonstrate that the polymorphism of solution-processed organic semiconductors in ... Polymorphism of organic semiconductor films is of key importance for the performance of organic thin film transistors(OTFTs).Herein,we demonstrate that the polymorphism of solution-processed organic semiconductors in thin film transistors can be controlled by finely tuning the surface nanostructures of substrates with self-assembled monolayers(SAMs).It is found that the SAMs of 12-cyclohexyldodecylphosphonic acid(CDPA)and 12-phenyldodecylphosphonic acid(Ph DPA)induce different polymorphs in the dip-coated films of 2-dodecyl[1]benzothieno[3,2-b][1]benzothiophene(BTBT-C12).The film of BTBT-C12 on CDPA exhibits field effect mobility as high as 28.1 cm2 V-1 s-1 for holes,which is higher than that of BTBT-C12 on Ph DPA by three times.The high mobility of BTBT-C12 on CDPA is attributable to the highly oriented films of BTBT-C12 with a reduced in-plane lattice and high molecular alignment. 展开更多
关键词 self-assembled monolayer organic thin film transistor POLYMORPHISM interface engineering
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部