期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Conversion of organic carbon in the decomposable organic wastes in anaerobic lysimeters under different temperatures 被引量:1
1
作者 ZHAO You-cai, WANG Luo-chun (National Laboratory of Pollution Control and Resource Reuse, School of Environmental Engineering, Tongji University, Shanghai 200092, China.) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第3期315-322,共8页
The quantitative fractions of conversion of organic carbon in the decomposable organic wastes with initial moisture of 70% sorted from municipal solid wastes(MSW) in lysimeters into biogas, leachate and solid residue ... The quantitative fractions of conversion of organic carbon in the decomposable organic wastes with initial moisture of 70% sorted from municipal solid wastes(MSW) in lysimeters into biogas, leachate and solid residue were characterized, under temperatures of 25, 30 and 41℃, respectively, and circulation of leachate generated within the lysimeters. It is found that 27% of organic carbon in the wastes are conversed into gases, 0.8% into leachate, and the other 72% remained in the decomposable solid residues, after 180 days' degradation at 41℃. Higher temperature will lead to more rapid degradation and result to higher conversion of the organic carbon to biogas and lower to both solid residues and leachate, while the pollutant concentrations in leachate will be lower at a higher temperature and the values of COD are quite consistent with TOC. 展开更多
关键词 REFUSE organic wastes LYSIMETERS organic carbon CONVERSION
下载PDF
Utilization and management of organic wastes in Chinese agriculture:Past,present and perspectives 被引量:12
2
作者 Rmheld V. Roelcke M. 《Science China(Life Sciences)》 SCIE CAS 2005年第z2期965-979,共15页
关键词 organic wastes livestock production RECYCLING COMPOSTING environmental pollution nitrogen PHOSPHORUS POTASSIUM
原文传递
Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils 被引量:11
3
作者 Jing Zhang Xiangui Lin +3 位作者 Weiwei Liu Yiming Wang Jun Zeng Hong Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第8期1476-1482,共7页
The effectiveness of in-situ bioremediation of polycyclic aromatic hydrocarbons (PAHs) may be inhibited by low nutrients and organic carbon. To evaluate the effect of organic wastes on the PAHs removal efficiency of... The effectiveness of in-situ bioremediation of polycyclic aromatic hydrocarbons (PAHs) may be inhibited by low nutrients and organic carbon. To evaluate the effect of organic wastes on the PAHs removal efficiency of a plant-microbe remediation system, contaminated agricultural soils were amended with different dosages of sewage sludge (SS) and cattle manure (CM) in the presence of alfalfa (Medicago sativa L.) and PAHs-degraders (Bacillus sp. and Flavobacterium sp.). The results indicated that the alfalfa mean biomasses varied from 0.56 to 2.23 g/pot in root dry weight and from 1.80 to 4.88 g/pot in shoot dry weight. Low dose amendments, with rates of SS at 0.1% and CM at 1%, had prominent effects on plant growth and soil PAHs degradation. After 60-day incubation, compared with about 5.6% in the control, 25.8% PAHs removal was observed for treatments in the presence of alfalfa and PAHs-degraders; furthermore, when amended with different dosages of SS and CM, the removed PAHs from soils increased by 35.5%--44.9% and 25.5%-42.3%, respectively. In particular, the degradation of high-molecular-weight PAHs was up to 42.4%. Dehydrogenase activities (DH) ranged between 0.41 and 1.83 ~tg triphenylformazan/(g dry soil.hr) and the numbers of PAHs-degrading microbes (PDM) ranged from 1.14x106 to 16.6x106 most-probable-number/g dry soil. Further investigation of the underlying microbial mechanism revealed that both DH and PDM were stimulated by the addition of organic wastes and significantly correlated with the removal ratio of PAHs. In conclusion, the effect of organic waste application on soil PAHs removal to a great extent is dependent on the interactional effect of nutrients and dissolved organic matter in organic waste and soil microorganisms. 展开更多
关键词 polycyclic aromatic hydrocarbons (PAHs) soil contamination BIOREMEDIATION organic wastes
原文传递
Gasification of Organic Waste:Parameters,Mechanism and Prediction with the Machine Learning Approach
4
作者 Feng Gao Liang Bao Qin Wang 《Journal of Renewable Materials》 SCIE EI 2023年第6期2771-2786,共16页
Gasification of organic waste represents one of the most effective valorization pathways for renewable energy and resources recovery,while this process can be affected by multi-factors like temperature,feedstock,and s... Gasification of organic waste represents one of the most effective valorization pathways for renewable energy and resources recovery,while this process can be affected by multi-factors like temperature,feedstock,and steam content,making the product’s prediction problematic.With the popularization and promotion of artificial intelligence such as machine learning(ML),traditional artificial neural networks have been paid more attention by researchers from the data science field,which provides scientific and engineering communities with flexible and rapid prediction frameworks in the field of organic waste gasification.In this work,critical parameters including temperature,steam ratio,and feedstock during gasification of organic waste were reviewed in three scenarios including steam gasification,air gasification,and oxygen-riched gasification,and the product distribution and involved mechanism were elaborated.Moreover,we presented the details of ML methods like regression analysis,artificial neural networks,decision trees,and related methods,which are expected to revolutionize data analysis and modeling of the gasification of organic waste.Typical outputs including the syngas yield,composition,and HHVs were discussed with a better understanding of the gasification process and ML application.This review focused on the combination of gasification and ML,and it is of immediate significance for the resource and energy utilization of organic waste. 展开更多
关键词 GASIFICATION organic waste machine learning gas composition
下载PDF
Spatio-Temporal Characteristics of Heat Transfer of Methanation in Fluidized Bed for Pyrolysis and Gasification Syngas of Organic Solid Waste
5
作者 Danyang Shao Xiaojia Wang +1 位作者 Delu Chen Fengxia An 《Journal of Renewable Materials》 EI 2023年第10期3659-3680,共22页
Methanation is an effective way to efficiently utilize product gas generated from the pyrolysis and gasification of organic solid wastes.To deeply study the heat transfer and mass transfer mechanisms in the reactor,a ... Methanation is an effective way to efficiently utilize product gas generated from the pyrolysis and gasification of organic solid wastes.To deeply study the heat transfer and mass transfer mechanisms in the reactor,a successful three-dimensional comprehensive model has been established.Multiphase flow behavior and heat transfer mechanisms were investigated under reference working conditions.Temperature is determined by the heat release of the reaction and the heat transfer of the gas-solid flow.The maximum temperature can reach 951 K where the catalyst gathers.In the simulation,changes in the gas inlet velocity and catalyst flow rate were made to explore their effects on CO conversion rate and temperature for optimization purposes.As the inlet gas velocity increases from 2.78 to 4.79 m/s,the CO conversion rate decreases from 81.6%to 72.4%.However,more heat is removed from the reactor,and the temperature rise increases from 78.03 to 113.49 K.When the catalyst flow rate is increased from 7.18 to 17.96 kg/(m^(2)·s),the mass of the catalyst in the reactor is increased from 0.0019 to 0.0042 kg,and the CO conversion rate is increased from 66.8%to 81.5%.However,this increases the maximum temperature in the reactor from 940.0 to 966.4 K. 展开更多
关键词 organic solid waste methanation reactor multiphase flow three-dimensional simulation
下载PDF
Influence of Stand-Alone Vertical Gas Vents on Aeration and Denitrification of Organic Municipal Waste Assessed by Two-Dimensional (2D) Lysimeters
6
作者 Tadis Dillon Takayuki Shimaoka Teppei Komiya 《Journal of Geoscience and Environment Protection》 2023年第12期209-228,共20页
Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtaili... Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtailing further degradation. The aim of this study was the investigation of a low-cost method of replenishing oxygen consumed in landfilled waste. Three 2D lysimeters were established to investigate the effectiveness of stand-alone, vertical ventilation pipes inserted into waste masses. Two different configurations of ventilation were tested with the third lysimeter acting as an unventilated control. Lysimeters were left uninsulated and observed over the course of 6 months with regular collection of gas and leachate samples. Lysimeters were then simulated for Oxygen (O<sub>2</sub>) and Nitrous oxide (N<sub>2</sub>O) to analyze the denitrification contributions of each. The experiment revealed that a single ventilation pipe can increase the mean oxygen level of a 1.7 m × 1.0 m area by up to 13.5%. It also identified that while increasing the density of ventilation pipes led to increased O<sub>2</sub> levels, this increase was not significant at the 0.05 probability level. A single vent averaged 13.67% O<sub>2</sub> while inclusion of an additional vent in the same area only increased the average to 14.59%, a 6.7% increase. Simulation helped to verify that lower ventilation pipe placement density may be more efficient as in addition to the effect on oxygenation, denitrification efficiency may increase. Simulations of N<sub>2</sub>O production estimated between 8% - 20% more N<sub>2</sub>O being generated with lower venting density configurations. 展开更多
关键词 organic Waste Waste Stabilization Passive Aeration 2D Lysimeter COMSOL Multiphysics In-Situ Aeration
下载PDF
Synergistic Treatment of Low-concentration Organic Waste Gas by Micro-nano Bubble Coordinated with Peroxymonosulfate
7
作者 Peng ZHOU Yixin XU +1 位作者 Xiaosi LEI Mingjie WEI 《Meteorological and Environmental Research》 2023年第6期73-76,共4页
Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation r... Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation rule of xylene under different conditions such as the ORP value of the spray liquid, pH value of the spray liquid, liquid-gas ratio of the spray liquid, residence time of xylene, and initial concentration of xylene was investigated. The results showed that at a low concentration, the pH value of the spray liquid had little effect on the degradation rate of xylene. The degradation rate of xylene rose with the increase of the ORP value of the spray liquid, the liquid-gas ratio of the spray liquid, the residence time of xylene, and the initial concentration of xylene. 展开更多
关键词 Micro-nano bubble PEROXYMONOSULFATE SYNERGY Low concentration organic waste gas
下载PDF
Residual Effects of the Organic Amendments Poultry Litter,Farmyard Manure and Biochar on Soybean Crop 被引量:1
8
作者 Alexandre Martins Abdao dos Passos Pedro Milanez de Rezende +1 位作者 Everson Reis Carvalho Andreia Marcilane Aker 《Agricultural Sciences》 2014年第14期1376-1383,共8页
The use of organic wastes, as an alternative to inorganic fertilizer, can be an important strategy for Brazilian and tropical agriculture. Despite the importance, few field studies have been done for evaluating organi... The use of organic wastes, as an alternative to inorganic fertilizer, can be an important strategy for Brazilian and tropical agriculture. Despite the importance, few field studies have been done for evaluating organic amendments on soybean crops in Brazil. The study aimed to evaluate the residual effects of the organic amendments poultry litter, farmyard manure and biochar combined with mineral fertilizer on some agronomic attributes of a soybean crop. A field experiment was carried out in a split-split-plot scheme, with three replicates in a randomized block experimental design. The organic sources (plots) at rates of 0, 3, 6 and 9 Mg·ha-1 (subplots) combined with 0, 100, 200, 300 and 400 kg·ha-1 (sub subplots) of a mineral fertilizer were applied in 2008. In 2009, only the mineral fertilizer was used on the soybean crop. As a?result, all evaluated attributes were influenced by the treatments, except for the number of grains per pod. The application of poultry litter provided the highest yield (3715 kg·ha-1 using 9 Mg·ha-1 of the source). A synergistic effect between organic amendments and mineral fertilizer was observed. It was found the possibility of decrease doses of mineral fertilizers by prior use of organic amendments. The most effective dose combination application is 5.5 Mg·ha-1 of organic amendments associated with 200 kg·ha-1 of mineral fertilizer to provide optimum yield. The use of organic amendments, rich in nutrients, is a technology to sustainably increase the soybean grain yield. 展开更多
关键词 Glycine max Integrated Production organic wastes SUSTAINABILITY YIELD
下载PDF
Screening on oil-decomposing microorganisms and application in organic waste treatment machine 被引量:9
9
作者 LUYi-tong CHENXiao-bin ZHOUPei LIZhen-hong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第3期440-444,共5页
As an oil-decomposable mixture of two bacteria strains(Bacillus sp. and Pseudomonas sp.), Y3 was isolated after 50 d domestication under the condition that oil was used as the limited carbon source. The decomposing ra... As an oil-decomposable mixture of two bacteria strains(Bacillus sp. and Pseudomonas sp.), Y3 was isolated after 50 d domestication under the condition that oil was used as the limited carbon source. The decomposing rate by Y3 was higher than that by each separate individual strain, indicating a synergistic effect of the two bacteria. Under the conditions that T=25—40℃,pH=6—8, HRT(Hydraulic retention time)=36 h and the oil concentration at 0.1%, Y3 yielded the highest decomposing rate of 95.7 %. Y3 was also applied in an organic waste treatment machine and a certain rate of activated bacteria was put into the stuffing. A series of tests including humidity, pH, temperature, C/N rate and oil percentage of the stuffing were carried out to check the efficacy of oil-decomposition. Results showed that the oil content of the stuffing with inoculums was only half of that of the control. Furthermore, the bacteria were also beneficial to maintain the stability of the machine operating. Therefore, the bacteria mixture as well as the machines in this study could be very useful for waste treatment. 展开更多
关键词 oil-decomposing microorganism SCREENING application organic waste treatment machine decomposing rate
下载PDF
Study on the Recovery of Rhodium from Spent Organic Rhodium Catalysts of Acetic Acid Industry Using Pyrometallurgical Process 被引量:7
10
作者 HE Xiaotang WANG Huan +5 位作者 WU Xilong LI Yong ZHAO Yu HAN Shouli LI Kun GUO Junmei 《贵金属》 CAS CSCD 北大核心 2012年第A01期24-27,共4页
A new process recycling rhodium from organic waste containing rhodium in acetic acid industry is developed. Use the special affinity of base metal sulfides (FeS, Ni2S3 , CuS, etc.) on platinum group metals, adopting h... A new process recycling rhodium from organic waste containing rhodium in acetic acid industry is developed. Use the special affinity of base metal sulfides (FeS, Ni2S3 , CuS, etc.) on platinum group metals, adopting high nickel matte trapping-aluminothermic activation method to recovery rhodium from incinerator residue of organic rhodium waste. The method is shorter process, lower equipment requirement, and the higher activity of rhodium black. In pyrometallurgy enrichment process,the recovery rate of rhodium reached 94.65%, the full flow of rhodium recovery rate was 92.04%. 展开更多
关键词 METALLURGY organic waste platinum group metals RHODIUM refine pyrometallurgy enrichment
下载PDF
Short-term effects of organic amendments on soil fertility and root growth of rubber trees on Hainan Island, China 被引量:1
11
作者 Yanyan Huang Yudan Jing +4 位作者 Meirong Bei Hongzhu Yang Zhengzao Cha Qinghuo Lin Wei Luo 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2137-2144,共8页
Rubber[Hevea brasiliensis(Willd.ex A.Juss.)Müll.Arg.]plantations are the largest cultivated forest type in tropical China.Returning organic materials to the soil will help to maintain the quality and growth of ru... Rubber[Hevea brasiliensis(Willd.ex A.Juss.)Müll.Arg.]plantations are the largest cultivated forest type in tropical China.Returning organic materials to the soil will help to maintain the quality and growth of rubber trees.Although many studies have demonstrated that organic waste materials can be used to improve soil fertility and structure to promote root growth,few studies have studied the eff ects of organic amendments on soil fertility and root growth in rubber tree plantations.Here,bagasse,coconut husk or biochar were applied with a chemical fertilizer to test their eff ects on soil properties after 6 months and compared with the eff ects of only the chemical fertilizer.Results showed that the soil organic matter content,total nitrogen,available phosphorus and available potassium after the chemical fertilizer(F)treatment were all signifi cantly lower than after the chemical fertilizer+bagasse(Fba),chemical fertilizer+coconut husk(Fco)or chemical fertilizer+biochar(Fbi)(p<0.05).Soil pH in all organic amendments was higher than in the F treatment,but was only signifi cantly higher in the Fbi treatment.In contrast,soil bulk density in the F treatment was signifi cantly higher than in treatments with the organic amendments(p<0.05).When compared with the F treatment,soil root dry mass increased signifi-cantly by 190%,176%and 33%in Fba,Fco and Fbi treatments,respectively(p<0.05).Similar results were found for root activity,number of root tips,root length,root surface area and root volume.Conclusively,the application of bagasse,coconut husk and biochar increased soil fertility and promoted root growth of rubber trees in the short term.However,bagasse and coconut husk were more eff ective than biochar in improving root growth of rubber trees. 展开更多
关键词 organic waste Root development Rubber tree Soil fertility
下载PDF
Biocompatible Blends Based on Poly(Vinyl Alcohol)and Solid Organic Waste
12
作者 Antonio Greco Francesca Ferrari +1 位作者 Raffaella Striani Carola Esposito Corcione 《Journal of Renewable Materials》 SCIE 2019年第10期1023-1035,共13页
This work is aimed at the development of new green composite materials through the incorporation of the solid organic waste(SOW)in a thermoplastic matrix.After being ground,the organic waste was exposed to a steriliza... This work is aimed at the development of new green composite materials through the incorporation of the solid organic waste(SOW)in a thermoplastic matrix.After being ground,the organic waste was exposed to a sterilization process,though an autoclave cycle,in order to obtain a complete removal of the bacterial activity.The SOW was found to have a high amount of water,about 65-70%,which made uneconomical its further treatment to reduce the water amount.Therefore,a water soluble polymer,poly(vinyl alcohol)(PVA)was chosen in order to produce SOW based blends.However,in order to reduce the viscosity of the PVA/SOW slurry,further amount of water was added.The very low viscosity attained by the water suspension allowed to process the PVA/SOW blends by a pressure-free process,for the production of samples,which were afterwards subjected to physical and mechanical characterization.Flexural tests showed the promising properties of the developed blends.In particular,the relevance of porosity was assessed.Increasing the water amount involved a signification increase of porosity,due to a faster water evaporation during processing.On the other hand,compared to neat PVA,addition of SOW allowed to significantly decrease the porosity of the produced samples.Despite this,the mechanical properties of the PVA/SOW blends were shown to be lower than those of neat PVA processed analogously. 展开更多
关键词 Solid organic waste PVA EVAPORATION POROSITY mechanical properties
下载PDF
Pilot-test about Treatment of Low-concentration Organic Waste Gas Using a Fixed Biological Bed
13
作者 Wei Zhang Xu Zhang +2 位作者 Jun Ma Yajuan Zhu Zhuo Huang 《Meteorological and Environmental Research》 CAS 2013年第4期53-55,共3页
[ Objective] The study aims to discuss the feasibility of using a fixed biological bed to treat low-concentration organic waste gas. [ Method] A fixed biological bed was used to treat low-concentration organic waste g... [ Objective] The study aims to discuss the feasibility of using a fixed biological bed to treat low-concentration organic waste gas. [ Method] A fixed biological bed was used to treat low-concentration organic waste gas from a phosphate workshop, and then the waste gas treated was assessed by human sense of smell to determine the most economical empty bed contact time, thereby verifying the feasibility of using a fixed biolog- ical bed to treat low-concentration organic waste gas. [Result] When empty bed contact time was 60 s, the smell of the treated waste gas was acceptable, and COD value of recycled water in the fixed biological bed was essentially unchanged. It proved that organic load of the waste gas was consumed by microorganisms within 60 s. [ Conclusion] It is feasible to use a fixed biological bed to treat Iow-concantration organic waste gas from a phosphate workshop. 展开更多
关键词 Fixed biological bed Low-concentration organic waste gas Pilot-test China
下载PDF
Assessment of Municipal Organic Solid Waste, as a Potential Feedstock for Briquette Production in Kampala, Uganda
14
作者 Richard Basona Abondio Allan John Komakech +4 位作者 Robert Kyeyune Kambugu Nicholas Kiggundu Joshua Wanyama Ahamada Zziwa Samuel Kyamanywa 《Journal of Sustainable Bioenergy Systems》 2020年第2期62-75,共14页
The current shortage of energy resources coupled with environmental degradation problems resulting from deforestation in Uganda has contributed to increased demand for renewable energy resources including municipal or... The current shortage of energy resources coupled with environmental degradation problems resulting from deforestation in Uganda has contributed to increased demand for renewable energy resources including municipal organic solid waste and agricultural residues. However, organic waste from Municipal Solid Waste (MSW) may contain contaminants that are harmful to public health and the environment. This study determined the heavy metal concentration in MSW in Kampala City, Uganda. Also, the physicochemical properties of briquettes produced from the MSW were compared with charcoal. The waste samples were collected from residential, institutional and market areas over a period of two weeks.<span style="font-family:Verdana;"> They were then analyzed for the presence of heavy metals. Briquettes were made from the bio-waste </span><span style="font-family:Verdana;">and </span><span style="font-family:Verdana;">were subjected to calorific and proximate analysis. Results indicated that the mean concentrations of Cd, Cr, Cu, Fe, and Pb were 1.25 mg/kg, 2.04 mg/kg, 38.2 mg/kg, 3.97 mg/kg and 1.99 mg/kg respectively while Hg was not detected. The calorific values of briquettes ranged from 8.9 to 15.3 MJ/kg and were lower than those of charcoal. Heavy metal concentrations in bio-waste collected were below the permissible acceptable limits. T</span><span style="font-family:Verdana;">hese findings indicate that the sampled MSW does not pose a health hazard arising from the presence of such heavy metals and therefore could be a safe source of renewable energy.</span> 展开更多
关键词 organic Waste Heavy Metal Concentration BRIQUETTES Calorific Value Renewable Energy
下载PDF
Recovery of Organic Waste with Other Biological Components for the Production of Organic Fertilizer: Improved Biochar
15
作者 Félicité Obono Mba Loic Foka Deffo Augustin Goudoum 《Journal of Geoscience and Environment Protection》 2022年第3期76-83,共8页
The study was carried out in Baham district in the West Cameroon region, as part of the recovery of organic waste with other biological components for the manufacture of an organic fertilizer (improved biochar). Throu... The study was carried out in Baham district in the West Cameroon region, as part of the recovery of organic waste with other biological components for the manufacture of an organic fertilizer (improved biochar). Through observations and a survey questionnairy submitted to 100 farmers, it appears that the majority use synthetic chemical fertilizers. Farmers using chemical fertilizers find them dangerous to their health. In addition, 58.57% of these farmers said they felt unwell after spreading these fertilizers. However, 64.28% of these farmers do not acquire PPE for reasons of financial means on the one hand and ignorance on the other hand. 54.28% of respondents using only chemical fertilizers noted declining agricultural production. The surveys also reveal that biochar (of plant origin) as a solution proposed by CIPCRE is used by a minority of farmers (21%) in the said locality on the one hand and on the other hand has limits in terms of intake nutrients for crops;this was confirmed by analyzes of the physico-chemical parameters. 展开更多
关键词 organic Waste BIOCHAR Improved Biochar Sustainable Agriculture
下载PDF
Dual‑Doped Nickel Sulfide for Electro‑Upgrading Polyethylene Terephthalate into Valuable Chemicals and Hydrogen Fuel
16
作者 Zhijie Chen Renji Zheng +4 位作者 Teng Bao Tianyi Ma Wei Wei Yansong Shen Bing‑Jie Ni 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期385-399,共15页
Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management.Recently,electrocatalytically converting polyethylene terephthalate(PET)into format... Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management.Recently,electrocatalytically converting polyethylene terephthalate(PET)into formate and hydrogen has aroused great interest,while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol(PET monomer)oxidation reaction(EGOR)remains a challenge.Herein,a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy.Benefiting from the interconnected ultrathin nanosheet architecture,dual dopants induced upshifting d band centre and facilitated in situ structural reconstruction,the Co and Cl co-doped Ni_(3)S_(2)(Co,Cl-NiS)outperforms the singledoped and undoped analogues for EGOR.The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency(>92%)and selectivity(>91%)at high current densities(>400 mA cm^(−2)).Besides producing formate,the bifunctional Co,Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h^(−1)in 2 M KOH,at 1.7 V.This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes,but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production. 展开更多
关键词 Hydrogen energy Electro-upcycling Structural reconstruction organic waste upcycling d Band centre
下载PDF
Three-Dimensional Simulation of Hydrodynamic Mechanism of Fluidized Bed Methanation
17
作者 Xiaojia Wang Danyang Shao +2 位作者 Delu Chen Yutong Gong Fengxia An 《Journal of Renewable Materials》 EI 2023年第7期3155-3175,共21页
Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas i... Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa. 展开更多
关键词 organic solid waste methanation reactor multiphase flow three-dimensional simulation
下载PDF
The Performance of Black Soldier Fly Larvae (BSFLs), Hermetia illucens L. (Diptera: Stratiomyidae), as a Function of the Substrate Used: A Review
18
作者 Marykathleen Agbornawbi Tambeayuk Marc Anselme Kamga Olalekan J. Taiwo 《Journal of Geoscience and Environment Protection》 2023年第9期133-152,共20页
Organic wastes are one of the greatest challenges that cities face worldwide. In numerous underdeveloped nations, like Cameroon, waste is often disposed of through landfills, composting, or open-air combustion. Unfort... Organic wastes are one of the greatest challenges that cities face worldwide. In numerous underdeveloped nations, like Cameroon, waste is often disposed of through landfills, composting, or open-air combustion. Unfortunately, the concept of waste sorting and organic waste processing is new to many individuals. This has led to an increase in the amount of organic waste and the costs connected with its management. Consequently, the majority of developing nations have sought out waste management solutions that are more cost-effective. Therefore, it has been determined that the bioconversion of organic wastes by black soldier fly larvae (BSFLs) (Hermetia illucens) into multifunctional prepupae is a viable alternative. Appreciation is given to the employment of the organic waste management approach in developing nations since it is not only environmentally friendly and economically viable, but also provides a means for waste valorisation through the production of diverse resources and potential economic benefits. Studies have proved the usefulness of the insect in controlling organic wastes, but countries such as Cameroon are still unfamiliar with the nuances of this method. Consequently, this timely review examined the performance of the BSFL, specifically in organic waste treatment, as well as the best practices for multiplying them to determine its viability for use in a waste treatment plant, the production of high-quality larvae as a source of protein for livestock, and the production of diesel fuel. 展开更多
关键词 Environmental Sustainability organic Waste Management Waste Valorisation Black Soldier Fly Larvae (BSFLs) Performance Protein Source Biodiesel
下载PDF
Effects of oxidants on the degradation of tributyl phosphate under supercritical water oxidation conditions
19
作者 Qiang Qin Xiao-Bin Xia +2 位作者 Shi-Bin Li Shuai Wang Hong-Jun Ma 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第3期160-171,共12页
The effects of additional oxidants,such as NaNO_(3),Na_(2)S_(2)O_(3),KClO_(4),and K_(2)Cr_(2)O_(7),on the supercritical water oxidation(SCWO)of tributyl phosphate(TBP)were studied.The coupling of an ionic oxidant with... The effects of additional oxidants,such as NaNO_(3),Na_(2)S_(2)O_(3),KClO_(4),and K_(2)Cr_(2)O_(7),on the supercritical water oxidation(SCWO)of tributyl phosphate(TBP)were studied.The coupling of an ionic oxidant with SCWO can effectively enhance the oxidative degradation ability of the system,thus increasing its organic-matter-removal efficiency at a reduced reaction temperature.Moreover,the addition of NaNO_(3),KClO_(4),or K_(2)Cr_(2)O_(7)could improve this efficiency at a reaction temperature of 500℃compared with that of the original system at 550℃.Additionally,based on the conditions adopted in this study,the addition of either of these oxidants could reduce the final total organic carbon(TOC)of the effluent from~500 to<100 ppm.Concurrently,the ionic oxidants could effectively improve the processing capacity of the SCWO system to reduce the scale of the equipment,as well as the amount of produced wastewater.Compared with KClO_(4)and Na_(2)S_(2)O_(3),the addition of 10 mmol/L NaNO_(3)and K_(2)Cr_(2)O_(7)to the organic feed could increase the processing capacity of the system from 4 to 10%while maintaining the TOC removal at>99%.The effects of the ionic oxidants on the gas products,including CO_(2),CO,H_(2),and CH_(4),as well as other organic gases,have also been studied.Among these gas products,CO_(2)accounted for the main gas product with a proportion of more than half.At<500℃,temperature significantly affected the as products(CO,H_(2),CH_(4),and other organic gases).However,the gas product was mainly CO_(2)when the temperature was increased to≥500℃.This study initially revealed the enhancement effect of ionic oxidants on SCWO,which still requires further research. 展开更多
关键词 Supercritical water oxidation Ionic oxidant organic wastes
下载PDF
Pyrolysis of rice husk and sawdust for liquid fuel 被引量:6
20
作者 ZHU Xi-feng ZHENG Ji-lu GUO Qing-xiang ZHU Qing-shi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第2期392-396,共5页
The paper is focused on studying how to convert rice husk and sawdust into liquid fuel. Rice husk, sawdust and their mixture were pyrolyzed at the temperature between 420℃ and 540℃, and the main product of liquid fu... The paper is focused on studying how to convert rice husk and sawdust into liquid fuel. Rice husk, sawdust and their mixture were pyrolyzed at the temperature between 420℃ and 540℃, and the main product of liquid fuel was obtained. The experimental result showed that the yield of liquid fuel heavily depended on the kind of feedstock and pyrolysis temperature. In the experiments, the maximum liquid yields for rice husk, sawdust and their mixture were 56% at 465 ℃, 61% at 490℃ and 60% at 475℃ respectively. Analysis with GC-MS and other apparatus indicated that the liquid fuel is a complicated organic compound with low caloric value and can be directly used as fuel oil without any up-grading. As a crude oil, the liquid fuel can be refined to be vehicle oil. 展开更多
关键词 solid organic waste rice husk SAWDUST PYROLYSIS liquid fuel
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部