The efficiency of the green inhibitors(sodium salts of fumarate,glycolate and gluconate)in suppressing corrosion of the structural MA8 magnesium alloy(Mg–Mn–Ce)and the biomedical Mg–0.8Ca alloy was studied using th...The efficiency of the green inhibitors(sodium salts of fumarate,glycolate and gluconate)in suppressing corrosion of the structural MA8 magnesium alloy(Mg–Mn–Ce)and the biomedical Mg–0.8Ca alloy was studied using the hydrogen evolution measurements,mass loss test,EIS,PDP,SVET/SIET.The analysis of the morphology,chemical composition,and growth kinetic of corrosion films formed in 0.9 wt%NaCl solution with and without corrosion inhibitors was carried out.The most compact surface film with the smallest thickness was formed in a saline solution with sodium fumarate.The Mg alloy samples exhibited the highest polarization resistance,the lowest localized electrochemical activity,and the lowest corrosion rate in saline with the addition of sodium fumarate and sodium glycolate.The efficiency of the applied inhibitors was up to 81%.The model of the corrosion mechanism based on the sorption of molecules of organic inhibitors is proposed.The results show the high compatibility of the used inhibitors with the calcium-phosphate PEO-matrix,indicating the possibility of forming a self-healing coating by means of these active substances.展开更多
The inhibition effect of dimethylethanolamine(DMEA) and its composite with carboxylic acid was studied with the electrochemical tests. The experimental results indicate that DMEA is not a good inhibitor but the comp...The inhibition effect of dimethylethanolamine(DMEA) and its composite with carboxylic acid was studied with the electrochemical tests. The experimental results indicate that DMEA is not a good inhibitor but the composite of DMEA with caprylic acid exhibits excellent inhibiting efficiency. The synergic mechanism of the organic corrosion inhibitors(OCIs) was studied with quantum chemical calculations. It is found that the DMEA forms a quaternary ammonium salt with the proton in carboxylic acid, and a cyclic complex formed between the salt and Fe may be responsible for the enhancement of inhibiting efficiency. The possible hydrogen bond formed between DMEA and carboxylic acid is not enough for the inhibiting effect. This work is helpful to proposing theoretical interpretation as well as developing a functional organic inhibitor to improve the durability of reinforced concrete contaminated with chloride.展开更多
A low-viscosity emulsion of crude oil in water can be believed to be the bulk of a flow regime in a pipeline.To differentiate which crude oil would and which would not counter the blockage of flow due to gas hydrate f...A low-viscosity emulsion of crude oil in water can be believed to be the bulk of a flow regime in a pipeline.To differentiate which crude oil would and which would not counter the blockage of flow due to gas hydrate formation in flow channels,varying amount of crude oil in water emulsion without any other extraneous additives has undergone methane gas hydrate formation in an autoclave cell.Crude oil was able to thermodynamically inhibit the gas hydrate formation as observed from its hydrate stability zone.The normalized rate of hydrate formation in the emulsion has been calculated from an illustrative chemical affinity model,which showed a decrease in the methane consumption(decreased normalized rate constant) with an increase in the oil content in the emulsion.Fourier transform infrared spectroscopy(FTIR) of the emulsion and characteristic properties of the crude oil have been used to find the chemical component that could be pivotal in selfinhibitory characteristic of the crude oil collected from Ankleshwar,India,against a situation of clogged flow due to formation of gas hydrate and establish flow assurance.展开更多
An ionic fluid based on aromatic heterocyclic family constituted by 1,3-diazole groups was investigated. The purpose is to describe their electrochemical characteristics in order to identify the strategy to avoid the ...An ionic fluid based on aromatic heterocyclic family constituted by 1,3-diazole groups was investigated. The purpose is to describe their electrochemical characteristics in order to identify the strategy to avoid the A36 carbon steel surface degradation by using electrochemical measurements. We found that the linear polarization resistance reveals an increasing value when the organic unsaturated cyclic ionic fluid was added to the corrosive electrolyte. The polarization curves and Tafel Extrapolation obtained to know the slopes tafel and the inhibitor efficiency from current density (i<sub>corr</sub>) shows a high efficiency inhibition value.展开更多
Mg alloy was protected with Mg:Al layered double hydroxide(LDH)coating intercalated with three green corrosion inhibitors(sodium benzoate,3-aminopropyltriethoxysilane and 8-hydroxyquinoline).The in-situ hydrothermal a...Mg alloy was protected with Mg:Al layered double hydroxide(LDH)coating intercalated with three green corrosion inhibitors(sodium benzoate,3-aminopropyltriethoxysilane and 8-hydroxyquinoline).The in-situ hydrothermal approach was adopted to intercalate corrosion inhibitors into Mg:Al LDH coating.The intercalated Mg:Al LDH coating was successfully acquired,and the crystalline structure of Mg:Al LDH coating was verified with X-ray diffraction(XRD).The organic functional groups of corrosion inhibitors were identified with the help of Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS).The compact and uniform morphology was confirmed by scanning electron microscopy(SEM).The electrochemical measurement revealed better corrosion resistance of corrosion inhibitorintercalated Mg:Al LDH coatings as compared to that of pristine Mg alloy.The corrosion protection mechanism of corrosion inhibitors was described and unearthed the corrosion inhibitor with the best performance.展开更多
Effect of an organic corrosion inhibitor(OCI) named PCI-2014 added in chloride solution on the critical chloride concentration of mild steel depassivation and the critical OCI concentrations for repairing the steel in...Effect of an organic corrosion inhibitor(OCI) named PCI-2014 added in chloride solution on the critical chloride concentration of mild steel depassivation and the critical OCI concentrations for repairing the steel in different chloride solution were investigated.The results show that the critical chloride concentration increases exponentially with raises of PCI-2014 concentration in the solution.Within a certain chloride ion concentration range,the critical PCI-2014 concentration for repairing the corroded steel is also increases exponentially with enhancement of chloride content in the solution.Atomic force microscopy images display the molecular particles of inhibitor are adsorbed on the steel surface and formed a protective layer.Analysis of X-ray photoelectron spectroscopy shows the chloride ions at the surface of steel are displaced by atoms or molecules of the inhibitor in chloride condition.展开更多
基金supported by the Grant of Russian Science Foundation,Russia(project no 20–13–00130,https://rscf.ru/en/project/20-13-00130/)supported by the Grant of Russian Science Foundation,Russia(project no 24–73–10008,https://rscf.ru/en/project/24-73-10008/)XRD data were obtained under the government assignments from the Ministry of Science and Higher Education of the Russian Federation,Russia(project no FWFN-2024-0001).
文摘The efficiency of the green inhibitors(sodium salts of fumarate,glycolate and gluconate)in suppressing corrosion of the structural MA8 magnesium alloy(Mg–Mn–Ce)and the biomedical Mg–0.8Ca alloy was studied using the hydrogen evolution measurements,mass loss test,EIS,PDP,SVET/SIET.The analysis of the morphology,chemical composition,and growth kinetic of corrosion films formed in 0.9 wt%NaCl solution with and without corrosion inhibitors was carried out.The most compact surface film with the smallest thickness was formed in a saline solution with sodium fumarate.The Mg alloy samples exhibited the highest polarization resistance,the lowest localized electrochemical activity,and the lowest corrosion rate in saline with the addition of sodium fumarate and sodium glycolate.The efficiency of the applied inhibitors was up to 81%.The model of the corrosion mechanism based on the sorption of molecules of organic inhibitors is proposed.The results show the high compatibility of the used inhibitors with the calcium-phosphate PEO-matrix,indicating the possibility of forming a self-healing coating by means of these active substances.
基金Funded by the National Natural Science Foundation of China(No.51278443)the Shandong Province Natural Science Foundation(ZR2011EEM006)
文摘The inhibition effect of dimethylethanolamine(DMEA) and its composite with carboxylic acid was studied with the electrochemical tests. The experimental results indicate that DMEA is not a good inhibitor but the composite of DMEA with caprylic acid exhibits excellent inhibiting efficiency. The synergic mechanism of the organic corrosion inhibitors(OCIs) was studied with quantum chemical calculations. It is found that the DMEA forms a quaternary ammonium salt with the proton in carboxylic acid, and a cyclic complex formed between the salt and Fe may be responsible for the enhancement of inhibiting efficiency. The possible hydrogen bond formed between DMEA and carboxylic acid is not enough for the inhibiting effect. This work is helpful to proposing theoretical interpretation as well as developing a functional organic inhibitor to improve the durability of reinforced concrete contaminated with chloride.
基金the financial assistance provided by University Grants Commission, New Delhi, India, under Special Assistance Program (SAP) to the Department of Petroleum Engineering, Indian School of Mines, Dhanbad, India
文摘A low-viscosity emulsion of crude oil in water can be believed to be the bulk of a flow regime in a pipeline.To differentiate which crude oil would and which would not counter the blockage of flow due to gas hydrate formation in flow channels,varying amount of crude oil in water emulsion without any other extraneous additives has undergone methane gas hydrate formation in an autoclave cell.Crude oil was able to thermodynamically inhibit the gas hydrate formation as observed from its hydrate stability zone.The normalized rate of hydrate formation in the emulsion has been calculated from an illustrative chemical affinity model,which showed a decrease in the methane consumption(decreased normalized rate constant) with an increase in the oil content in the emulsion.Fourier transform infrared spectroscopy(FTIR) of the emulsion and characteristic properties of the crude oil have been used to find the chemical component that could be pivotal in selfinhibitory characteristic of the crude oil collected from Ankleshwar,India,against a situation of clogged flow due to formation of gas hydrate and establish flow assurance.
文摘An ionic fluid based on aromatic heterocyclic family constituted by 1,3-diazole groups was investigated. The purpose is to describe their electrochemical characteristics in order to identify the strategy to avoid the A36 carbon steel surface degradation by using electrochemical measurements. We found that the linear polarization resistance reveals an increasing value when the organic unsaturated cyclic ionic fluid was added to the corrosive electrolyte. The polarization curves and Tafel Extrapolation obtained to know the slopes tafel and the inhibitor efficiency from current density (i<sub>corr</sub>) shows a high efficiency inhibition value.
基金financially supported by the National Natural Science Foundation of China(No.51471021)。
文摘Mg alloy was protected with Mg:Al layered double hydroxide(LDH)coating intercalated with three green corrosion inhibitors(sodium benzoate,3-aminopropyltriethoxysilane and 8-hydroxyquinoline).The in-situ hydrothermal approach was adopted to intercalate corrosion inhibitors into Mg:Al LDH coating.The intercalated Mg:Al LDH coating was successfully acquired,and the crystalline structure of Mg:Al LDH coating was verified with X-ray diffraction(XRD).The organic functional groups of corrosion inhibitors were identified with the help of Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS).The compact and uniform morphology was confirmed by scanning electron microscopy(SEM).The electrochemical measurement revealed better corrosion resistance of corrosion inhibitorintercalated Mg:Al LDH coatings as compared to that of pristine Mg alloy.The corrosion protection mechanism of corrosion inhibitors was described and unearthed the corrosion inhibitor with the best performance.
基金supported by National Natural Sci-ence Foundation of China(51278443)Graduate Innovation Fund of Yantai University(01075)
文摘Effect of an organic corrosion inhibitor(OCI) named PCI-2014 added in chloride solution on the critical chloride concentration of mild steel depassivation and the critical OCI concentrations for repairing the steel in different chloride solution were investigated.The results show that the critical chloride concentration increases exponentially with raises of PCI-2014 concentration in the solution.Within a certain chloride ion concentration range,the critical PCI-2014 concentration for repairing the corroded steel is also increases exponentially with enhancement of chloride content in the solution.Atomic force microscopy images display the molecular particles of inhibitor are adsorbed on the steel surface and formed a protective layer.Analysis of X-ray photoelectron spectroscopy shows the chloride ions at the surface of steel are displaced by atoms or molecules of the inhibitor in chloride condition.