Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological...Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.展开更多
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ...Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.展开更多
With the rapid development of the computer network, communication technology and the economic globalization, the competition environment faced by the enterprises has been more and more complicated. While the interacti...With the rapid development of the computer network, communication technology and the economic globalization, the competition environment faced by the enterprises has been more and more complicated. While the interactive competition becomes more and more fierce, it has been more and more difficult for enterprises to keep sustainable advantages in competition. In this paper the author mainly discusses the severe challenge of the new competition conditions to the traditional hierarchical structure and the reason why flexible organization will be the inevitable strategy selection of the enterprises.展开更多
Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through soluti...Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.展开更多
Indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates at low temperature by DC magnetron sputtering from an In-Sn (90-10 wt pct) alloy target were studied. The corre...Indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates at low temperature by DC magnetron sputtering from an In-Sn (90-10 wt pct) alloy target were studied. The correla- tion between deposition conditions and ITO property was systematically investigated and characterized. These as-deposited ITO films were used as the anode contact for flexible organic light-emitting diodes (FOLEDs). The fabricated FOLEDs with a structure of PET/ITO/NPB (50 nm)/Alq (20 nm)/Mg:Ag (100 nm) showed a maximum luminance of 2125 cd/m^2 at 13 V.展开更多
For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:...For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:5′″,2″″-quinquethiophene (5T-CHO) and 3,4,9,10-perylenetertracarboxylic dianhydride (PTCDA). The PET-ITO/4T-CHO/PTCDA/A1 device has an open circuit voltage (Voc) of 1.56 V, photoelectric conversion efficiency of 0.77%. The PET-ITO/5T-CHO/PTCDA/A1 device has a Voc of 1.70 V, photoelectric conversion efficiency of 0.84%. The two flexible devices have high Voc (1.56 and 1.70 V). It is possible that intermolecular hydrogen bonding between -CHO group of nT-CHO and carboxylic dianhydride of PTCDA contributes to enhancing the efficiency by promoting interfacial electron transfer and eliminating the subconducting band trap sites.展开更多
Currently, 86% of the energy originates from fossil fuelsforelectricity. These are expected to run out, causing severe environmental damage threatening future generations. The total impact of Small and Medium Enterpri...Currently, 86% of the energy originates from fossil fuelsforelectricity. These are expected to run out, causing severe environmental damage threatening future generations. The total impact of Small and Medium Enterprises (SMEs) on the economy is significant. Solar cells harness the sun's energy to generate electricity in an environmentally friendly manner. This study compares silicon solar cells to flexible Organic Photovoltaic solar cells (OPV) for electricity energy for a micro-business in the UK and Iraq. It shows that it is feasible to replace existing fossil fuel sources with solar cells in Iraq due to a greater amount of solar radiation striking the earth's surface. Flexible solar cells can replace a proportion of the energy requirements in the UK and a larger proportion in Iraq. Using existing 20% efficient solar cells, 28% and 83% of the energy requirements of the microbusiness can be replaced in UK and Iraq respectively. Assuming 20% efficiency for solar cells placed on windows, 74% and 220% of the energy requirements of UK and Kurdistan can be replaced respectively and the surplus stored.展开更多
Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improve...Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improved the wettability of silver nanowires on the barrier films and led to the formation of homogenous large-area AgNWs networks.The mechanical flexibility,especially the adhesion force between the silver electrode and the barrier film substrate was dramatically improved through PVA modification.The efficiency of 13.51%for the flexible OSCs with an area of 0.64 cm2 was achieved based on the PET/barrier film/PVA/AgNWs electrode.The long-term stability showed the flexible OSCs based on the PET/barrier film/PVA/AgNWs electrode have a significantly improved stability relative to the device on PET/AgNWs electrode,and comparable air stability as the rigid device with glass/ITO device.The unencapsulated devices maintained nearly 50%of the original efficiency after storage for 600 h in air.After a simple top encapsulation,the flexible devices remained at 60%of the initial efficiency after 2000 h in the air.Therefore,the flexible AgNWs electrode based on the barrier film would have the potential to improve the air storage stability of organic flexible solar cells.展开更多
Graphene-based flexible transparent electrodes(FTEs)are promising candidate materials for developing next-generation flexible organic light-emitting diodes(OLEDs).However,the quest for high-efficiency OLEDs is hindere...Graphene-based flexible transparent electrodes(FTEs)are promising candidate materials for developing next-generation flexible organic light-emitting diodes(OLEDs).However,the quest for high-efficiency OLEDs is hindered by the low light-extraction and charge injection efficiencies of graphene electrode.Here,we combine the frustrated Lewis pair doping with nanostructure engineering to obtain high-performance graphene FTE.A p-type dopant aci-nitromethane-tris(pentafluorophenyl)borane(ANBCF)was synthesized and deposited on graphene FTE to form an aperiodic nanostructure,which not only improves the light-extraction but also stably p-dopes graphene to enhance its hole injection.The use of ANBCF-doped graphene as the anode enables high-efficiency flexible green OLEDs with external quantum efficiency(EQE)and power efficiency(PE)out-performing most flexible graphene OLEDs of comparable structure.This study provides a simple and effective pathway to fabricate high-performance graphene FTEs for efficient flexible OLEDs.展开更多
A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film...A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film,this OAS can achieve an ultrashort-term retention time of only 49 ms for instant electricalcomputing applications;this is the shortest retention time yet achieved by a two-terminal artificial synapse.An array of these flexible OASs can withstand a high bending strain of 5%for 10^(4) cycles;this deformation endurance is a new record.The OAS was also sensitive to the number and frequency of electrical inputs;a tunable cut-off frequency enables dynamic filtering for use in image detail enhancement.This work provides a new resource for development of future neuromorphic computing devices。展开更多
Bioinspired membranes are advantageous in capturing the osmotic energy.However,the conventional hybrid membranes possess low harvesting power density due to their low interfacial ionic transport efficiency and high in...Bioinspired membranes are advantageous in capturing the osmotic energy.However,the conventional hybrid membranes possess low harvesting power density due to their low interfacial ionic transport efficiency and high internal resistance.Herein,a new kind of hybrid membranes consisting of porous polymer and flexible organic frameworks was developed.The 3D porous framework enables ions to flux with high efficiency at the polymer-framework interface,resulting in high osmotic energy harvesting efficiency.By systematically screening the pore size of the frameworks,the output power density as high as 5.7 W/m^(2) was achieved under 50-fold KCl salinity gradient.展开更多
Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the diffi...Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the difficulty in balancing the conductivity,transmittance, and adhesion of FTEs to substrates. Herein, we present the so-called “reinforced concrete” strategy which finetunes the structure of silver nanowires(Ag NWs)-based FTEs with polydopamine(PDA) possessing good adhesion properties and moderate reducibility. The PDA reduces Ag+to form silver nanoparticles(Ag NPs) which grow like “rivets” at the Ag NW junction sites;PDA stabilizes the Ag NW skeleton and improves the adhesion between the Ag NWs and polyethylene terephthalate(PET) substrate and interface layer. The obtained Ag NW:PDA:Ag NP FTE exhibits excellent optoelectronic properties and high mechanical stability. The resulting flexible OSCs exhibit 17.07% efficiency, high flexibility during 10,000 bending test cycles, and robust peeling stability. In addition, this “reinforced concrete”-like FTE provides great advantages for the production of large-area flexible OSCs, thereby paving a new way toward their commercial application.展开更多
Silica thin films synthesized sol–gel process are proposed as flexible encapsulation materials.A sol–gel process provides a dense and stable amorphous silica structure,yielding an extremely high elastic deformation ...Silica thin films synthesized sol–gel process are proposed as flexible encapsulation materials.A sol–gel process provides a dense and stable amorphous silica structure,yielding an extremely high elastic deformation limit of 4.9%and extremely low water vapor transmission rate(WVTR)of 2.90×10^(−4)g/(m^(2)∙day)at 60℃and relative humidity of 85%.The WVTR is not degraded by cyclic bending deformations for the bending radius corresponding to a tensile strain of 3.3%in the silica encapsulation film,implying that the silica thin film is robust against the formation of pinhole-type defects by cyclic bending deformations.Flexible organic solar cells encapsulated with the silica films operate without degradation in power conversion efficiency for 50,000 bending cycles for a bending radius of 6 mm.展开更多
Printing of metal bottom back electrodes of flexible organic solar cells(FOSCs) at low temperature is of great significance to realize the full-solution fabrication technology. However, this has been difficult to ac...Printing of metal bottom back electrodes of flexible organic solar cells(FOSCs) at low temperature is of great significance to realize the full-solution fabrication technology. However, this has been difficult to achieve because often the interfacial properties of those printed electrodes, including conductivity, roughness, work function,optical and mechanical flexibility, cannot meet the device requirement at the same time. In this work, we fabricate printed Ag and Cu bottom back cathodes by a low-temperature solution technique named polymer-assisted metal deposition(PAMD) on flexible PET substrates. Branched polyethylenimine(PEI) and ZnO thin films are used as the interface modification layers(IMLs) of these cathodes. Detailed experimental studies on the electrical, mechanical, and morphological properties, and simulation study on the optical properties of these IMLs are carried out to understand and optimize the interface of printed cathodes. We demonstrate that the highest power conversion efficiency over 3.0% can be achieved from a full-solution processed OFSC with the device structure being PAMDAg/PEI/P3 HT:PC61BM/PH1000. This device also acquires remarkable stability upon repeating bending tests.展开更多
Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainabl...Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainable electrodes for lithium ion batteries. Content ratio of components and dispersion protocol were tailored in order to have theological properties suitable for a large and cheap manufacturing process as well as screen printing. The bio-sourced printed electrodes exhibit a high porosity value of 70% that limits the electrochemical performances. However, the calendering process enhances electrode performances by increasing the reversible capacity from 85 until 315 mAh/g and reducing porosity to an optimal value of 34%. Moreover the introduction of 2% w/w of monofluoro-ethylene carbonate in the electrolyte reduced their reversible capacity loss of 11% in the printed electrode.展开更多
A three-dimensional flexible organic framework FOF-1 has been synthesized from the condensation of a tetratopic acylhydrazine and a rigid 4,4-diphenyl-4,4-bipyridinium dialdehyde in water through the quantitative form...A three-dimensional flexible organic framework FOF-1 has been synthesized from the condensation of a tetratopic acylhydrazine and a rigid 4,4-diphenyl-4,4-bipyridinium dialdehyde in water through the quantitative formation of hydrazone bond. FOF-1 is further applied to construct a polycatenane framework FOF-pc-1 through the quantitative cucurbit[7]uril encapsulation for the diphenylbipyridinium subunits of the framework by making use of the dynamic nature of the hydrazone bond in water. The bipyridinium subunits in both frameworks can be reduced their radical cation counterparts to produce conjugated radical cation-linked dynamic organic frameworks rc-FOF-1 or rc-FOF-pc-1. Polycatenation is revealed to enhance the stability of the dynamic frameworks in water, whereas depolycatenation can be reached for both FOF-pc-1 and rc-FOF-pc-1 by using a ferrocene guest to form a more stable complex with CB[7].展开更多
Photonic crystal slabs integrated into organic light-emitting diodes(OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period...Photonic crystal slabs integrated into organic light-emitting diodes(OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period on flexible polycarbonate substrates using UV nanoimprint lithography. A hybrid organic–inorganic nanoimprint resist is used that serves also as a high refractive index layer. OLEDs composed of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) polymer anode, an organic emission layer [poly(p-phenylene vinylene)(PPV)-derivative 'Super Yellow'], and a metal cathode(Li F/Al) are deposited onto the flexible grating substrates. The effects of photonic crystal slab deformation in a flexible OLED are studied in theory and experiment. The substrate deformation is modeled using the finite-element method. The influence of the change in the grating period and the waveguide thickness under bending are investigated. The change in the grating period is found to be the dominant effect. At an emission angle of 20° a change in the resonance wavelength of 1.2% is predicted for a strain of 1.3% perpendicular to the grating grooves. This value is verified experimentally by analyzing electroluminescence and photoluminescence properties of the fabricated grating OLEDs.展开更多
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+2 种基金the Young Cross Team Project of CAS(JCTD-2021-14)CAS-CSIRO joint project of Chinese Academy of Sciences(121E32KYSB20190021)Vacuum Interconnected Nanotech Workstation,Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences(CAS)
文摘Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.
基金sponsored by the Regional Joint Fund of the National Science Foundation of China via Grant No. U21A20492the National Natural Science Foundation of China (NSFC) via Grant No. 62275041+2 种基金the Sichuan Science and Technology Program via Grant Nos. 2022YFH0081, 2022YFG0012 and 2022YFG0013the Sichuan Youth Software Innovation Project Funding via Grant No. MZGC20230068the Sichuan Province Key Laboratory of Display Science and Technology。
文摘Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.
基金This paper is supported by National Natural Science Foundation of China (No.70271033) and Shandong Province Natural Science Fund.
文摘With the rapid development of the computer network, communication technology and the economic globalization, the competition environment faced by the enterprises has been more and more complicated. While the interactive competition becomes more and more fierce, it has been more and more difficult for enterprises to keep sustainable advantages in competition. In this paper the author mainly discusses the severe challenge of the new competition conditions to the traditional hierarchical structure and the reason why flexible organization will be the inevitable strategy selection of the enterprises.
基金The authors acknowledge funding from the National Natural Science Foundation of China(61974150 and 51773213)Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC047)+1 种基金the Fundamental Research Funds for the Central Universities,the CAS-EU S&T cooperation partner program(174433KYSB20150013)the Natural Science Foundation of Ningbo(2018A610135).
文摘Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.
基金supported by the National Nature Science Foundation of China under grant No.60425101the Young Excellence Project of University of Electronic Science and Technology of China (UESTC-060206) Project
文摘Indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates at low temperature by DC magnetron sputtering from an In-Sn (90-10 wt pct) alloy target were studied. The correla- tion between deposition conditions and ITO property was systematically investigated and characterized. These as-deposited ITO films were used as the anode contact for flexible organic light-emitting diodes (FOLEDs). The fabricated FOLEDs with a structure of PET/ITO/NPB (50 nm)/Alq (20 nm)/Mg:Ag (100 nm) showed a maximum luminance of 2125 cd/m^2 at 13 V.
基金supported by the Ministry of Science and Technology of China(National Key Program for Basic Research,No.2001-CCA03500)NSFC(Nos.20674022,20534020,and 20774031)+1 种基金the Natural Science Foundation of Guangdong(Nos.04105931 and 2006A10702003)Guangzhou(No.2004J1-C0041)for financial support.
文摘For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:5′″,2″″-quinquethiophene (5T-CHO) and 3,4,9,10-perylenetertracarboxylic dianhydride (PTCDA). The PET-ITO/4T-CHO/PTCDA/A1 device has an open circuit voltage (Voc) of 1.56 V, photoelectric conversion efficiency of 0.77%. The PET-ITO/5T-CHO/PTCDA/A1 device has a Voc of 1.70 V, photoelectric conversion efficiency of 0.84%. The two flexible devices have high Voc (1.56 and 1.70 V). It is possible that intermolecular hydrogen bonding between -CHO group of nT-CHO and carboxylic dianhydride of PTCDA contributes to enhancing the efficiency by promoting interfacial electron transfer and eliminating the subconducting band trap sites.
文摘Currently, 86% of the energy originates from fossil fuelsforelectricity. These are expected to run out, causing severe environmental damage threatening future generations. The total impact of Small and Medium Enterprises (SMEs) on the economy is significant. Solar cells harness the sun's energy to generate electricity in an environmentally friendly manner. This study compares silicon solar cells to flexible Organic Photovoltaic solar cells (OPV) for electricity energy for a micro-business in the UK and Iraq. It shows that it is feasible to replace existing fossil fuel sources with solar cells in Iraq due to a greater amount of solar radiation striking the earth's surface. Flexible solar cells can replace a proportion of the energy requirements in the UK and a larger proportion in Iraq. Using existing 20% efficient solar cells, 28% and 83% of the energy requirements of the microbusiness can be replaced in UK and Iraq respectively. Assuming 20% efficiency for solar cells placed on windows, 74% and 220% of the energy requirements of UK and Kurdistan can be replaced respectively and the surplus stored.
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+4 种基金Young Cross Team Project of CAS(No.JCTD-2021-14)“Dual Carbon"Science and Technology Innovation of Jiangsu province(Industrial Prospect and Key Technology Research Program)(BE2022021)Suzhou Science and Technology Program(ST202219)CAS Special Research Assistant(SRA)Program of Suzhou Institute of Nano-Tech and Nano-Bionics(E355130101)grateful for the technical support for Jiangsu Funding Program for Excellent Postdoctoral Talent,Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(A2107).
文摘Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improved the wettability of silver nanowires on the barrier films and led to the formation of homogenous large-area AgNWs networks.The mechanical flexibility,especially the adhesion force between the silver electrode and the barrier film substrate was dramatically improved through PVA modification.The efficiency of 13.51%for the flexible OSCs with an area of 0.64 cm2 was achieved based on the PET/barrier film/PVA/AgNWs electrode.The long-term stability showed the flexible OSCs based on the PET/barrier film/PVA/AgNWs electrode have a significantly improved stability relative to the device on PET/AgNWs electrode,and comparable air stability as the rigid device with glass/ITO device.The unencapsulated devices maintained nearly 50%of the original efficiency after storage for 600 h in air.After a simple top encapsulation,the flexible devices remained at 60%of the initial efficiency after 2000 h in the air.Therefore,the flexible AgNWs electrode based on the barrier film would have the potential to improve the air storage stability of organic flexible solar cells.
基金supported by the National Science Foundation of China(Nos.52272051,52172057,52188101 and 52002375)Ministry of Science and Technology of China(No.2021YFA1200804)+3 种基金Chinese Academy of Sciences(Nos.ZDBSLYJSC027 and XDB30000000)Postdoctoral Science Foundation of China(Nos.2020M670812 and 2020TQ0328)Liaoning Revitalization Talents Program(No.XLYC1808013)Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002).
文摘Graphene-based flexible transparent electrodes(FTEs)are promising candidate materials for developing next-generation flexible organic light-emitting diodes(OLEDs).However,the quest for high-efficiency OLEDs is hindered by the low light-extraction and charge injection efficiencies of graphene electrode.Here,we combine the frustrated Lewis pair doping with nanostructure engineering to obtain high-performance graphene FTE.A p-type dopant aci-nitromethane-tris(pentafluorophenyl)borane(ANBCF)was synthesized and deposited on graphene FTE to form an aperiodic nanostructure,which not only improves the light-extraction but also stably p-dopes graphene to enhance its hole injection.The use of ANBCF-doped graphene as the anode enables high-efficiency flexible green OLEDs with external quantum efficiency(EQE)and power efficiency(PE)out-performing most flexible graphene OLEDs of comparable structure.This study provides a simple and effective pathway to fabricate high-performance graphene FTEs for efficient flexible OLEDs.
基金supported by the National Key R&D Program of China(Nos.2022YFE0198200,2022YFA1200044)the National Science Fund for Distinguished Young Scholars of China(No.T2125005)+1 种基金the Tianjin Science Foundation for Distinguished Young Scholars(No.19JCJQJC61000)the Shenzhen Science and Technology Project(No.JCYj20210324121002008).
文摘A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film,this OAS can achieve an ultrashort-term retention time of only 49 ms for instant electricalcomputing applications;this is the shortest retention time yet achieved by a two-terminal artificial synapse.An array of these flexible OASs can withstand a high bending strain of 5%for 10^(4) cycles;this deformation endurance is a new record.The OAS was also sensitive to the number and frequency of electrical inputs;a tunable cut-off frequency enables dynamic filtering for use in image detail enhancement.This work provides a new resource for development of future neuromorphic computing devices。
基金Financial support from the National R&D Program of China(Grant No.2017YFA0206901)the National Natural Science Foundation of China(NSFC,Grant Nos.21725202,21921003,and 21971046)the Science and Technology Commission of Shanghai Municipality(STCSM,Grant No.22JC1403700)is gratefully acknowledged。
文摘Bioinspired membranes are advantageous in capturing the osmotic energy.However,the conventional hybrid membranes possess low harvesting power density due to their low interfacial ionic transport efficiency and high internal resistance.Herein,a new kind of hybrid membranes consisting of porous polymer and flexible organic frameworks was developed.The 3D porous framework enables ions to flux with high efficiency at the polymer-framework interface,resulting in high osmotic energy harvesting efficiency.By systematically screening the pore size of the frameworks,the output power density as high as 5.7 W/m^(2) was achieved under 50-fold KCl salinity gradient.
基金supported by the National Natural Science Foundation of China (51922074, 22075194, 51820105003)the National Key Research and Development Program of China(2020YFB1506400)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJA430010)the Tang Scholarthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Collaborative Innovation Center of Suzhou Nano Science and Technology。
文摘Flexible transparent electrodes(FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells(OSCs). However, their production remains challenging owing to the difficulty in balancing the conductivity,transmittance, and adhesion of FTEs to substrates. Herein, we present the so-called “reinforced concrete” strategy which finetunes the structure of silver nanowires(Ag NWs)-based FTEs with polydopamine(PDA) possessing good adhesion properties and moderate reducibility. The PDA reduces Ag+to form silver nanoparticles(Ag NPs) which grow like “rivets” at the Ag NW junction sites;PDA stabilizes the Ag NW skeleton and improves the adhesion between the Ag NWs and polyethylene terephthalate(PET) substrate and interface layer. The obtained Ag NW:PDA:Ag NP FTE exhibits excellent optoelectronic properties and high mechanical stability. The resulting flexible OSCs exhibit 17.07% efficiency, high flexibility during 10,000 bending test cycles, and robust peeling stability. In addition, this “reinforced concrete”-like FTE provides great advantages for the production of large-area flexible OSCs, thereby paving a new way toward their commercial application.
基金Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2019R1I1A3A01054545)National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(MSIT)(Nos.2020M3H4A1A02084911 and 2019R1A2C1009025).
文摘Silica thin films synthesized sol–gel process are proposed as flexible encapsulation materials.A sol–gel process provides a dense and stable amorphous silica structure,yielding an extremely high elastic deformation limit of 4.9%and extremely low water vapor transmission rate(WVTR)of 2.90×10^(−4)g/(m^(2)∙day)at 60℃and relative humidity of 85%.The WVTR is not degraded by cyclic bending deformations for the bending radius corresponding to a tensile strain of 3.3%in the silica encapsulation film,implying that the silica thin film is robust against the formation of pinhole-type defects by cyclic bending deformations.Flexible organic solar cells encapsulated with the silica films operate without degradation in power conversion efficiency for 50,000 bending cycles for a bending radius of 6 mm.
基金supported by the Research Grant Council of Hong Kong(No.PolyUC5015-15G)the Hong Kong Polytechnic University(No.G-SB06)the National Natural Science Foundation of China(Nos.21125316,21434009,51573026)
文摘Printing of metal bottom back electrodes of flexible organic solar cells(FOSCs) at low temperature is of great significance to realize the full-solution fabrication technology. However, this has been difficult to achieve because often the interfacial properties of those printed electrodes, including conductivity, roughness, work function,optical and mechanical flexibility, cannot meet the device requirement at the same time. In this work, we fabricate printed Ag and Cu bottom back cathodes by a low-temperature solution technique named polymer-assisted metal deposition(PAMD) on flexible PET substrates. Branched polyethylenimine(PEI) and ZnO thin films are used as the interface modification layers(IMLs) of these cathodes. Detailed experimental studies on the electrical, mechanical, and morphological properties, and simulation study on the optical properties of these IMLs are carried out to understand and optimize the interface of printed cathodes. We demonstrate that the highest power conversion efficiency over 3.0% can be achieved from a full-solution processed OFSC with the device structure being PAMDAg/PEI/P3 HT:PC61BM/PH1000. This device also acquires remarkable stability upon repeating bending tests.
基金partially supported by theénergies du Futur Carnot Institute(Investissements d’Avenir-grant agreement No.ANR-11-CARN-030-01)the facilities of the Tek Li Cell platform funded by the Région Rhone-Alpes(ERDF:European Regional Development Fund)
文摘Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainable electrodes for lithium ion batteries. Content ratio of components and dispersion protocol were tailored in order to have theological properties suitable for a large and cheap manufacturing process as well as screen printing. The bio-sourced printed electrodes exhibit a high porosity value of 70% that limits the electrochemical performances. However, the calendering process enhances electrode performances by increasing the reversible capacity from 85 until 315 mAh/g and reducing porosity to an optimal value of 34%. Moreover the introduction of 2% w/w of monofluoro-ethylene carbonate in the electrolyte reduced their reversible capacity loss of 11% in the printed electrode.
基金financially supported by the National Natural Science Foundation of China (Nos. 21890732, 21890730 and21921003)。
文摘A three-dimensional flexible organic framework FOF-1 has been synthesized from the condensation of a tetratopic acylhydrazine and a rigid 4,4-diphenyl-4,4-bipyridinium dialdehyde in water through the quantitative formation of hydrazone bond. FOF-1 is further applied to construct a polycatenane framework FOF-pc-1 through the quantitative cucurbit[7]uril encapsulation for the diphenylbipyridinium subunits of the framework by making use of the dynamic nature of the hydrazone bond in water. The bipyridinium subunits in both frameworks can be reduced their radical cation counterparts to produce conjugated radical cation-linked dynamic organic frameworks rc-FOF-1 or rc-FOF-pc-1. Polycatenation is revealed to enhance the stability of the dynamic frameworks in water, whereas depolycatenation can be reached for both FOF-pc-1 and rc-FOF-pc-1 by using a ferrocene guest to form a more stable complex with CB[7].
基金support by the Bundesministerium fur Bildung und Forschung (BMBF) within the project Nano Futur under Project No. 03X5514
文摘Photonic crystal slabs integrated into organic light-emitting diodes(OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period on flexible polycarbonate substrates using UV nanoimprint lithography. A hybrid organic–inorganic nanoimprint resist is used that serves also as a high refractive index layer. OLEDs composed of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) polymer anode, an organic emission layer [poly(p-phenylene vinylene)(PPV)-derivative 'Super Yellow'], and a metal cathode(Li F/Al) are deposited onto the flexible grating substrates. The effects of photonic crystal slab deformation in a flexible OLED are studied in theory and experiment. The substrate deformation is modeled using the finite-element method. The influence of the change in the grating period and the waveguide thickness under bending are investigated. The change in the grating period is found to be the dominant effect. At an emission angle of 20° a change in the resonance wavelength of 1.2% is predicted for a strain of 1.3% perpendicular to the grating grooves. This value is verified experimentally by analyzing electroluminescence and photoluminescence properties of the fabricated grating OLEDs.