A series of Si-containing polyester-polyether multiblock copolymers were synthesizedby transesterification and melt copolycondensation of organosilicon monomers [1, 1, 3, 3-tetramethyl-1, 3-bis (p-carbomethoxyphenyl...A series of Si-containing polyester-polyether multiblock copolymers were synthesizedby transesterification and melt copolycondensation of organosilicon monomers [1, 1, 3, 3-tetramethyl-1, 3-bis (p-carbomethoxyphenyl) disiloxane] (I ) or dimethyl bis (p-carbometh-oxyphenyl) silane] (II) and dimethyl terephthalate (DMT), with 1, 4-butanediol, poly-tetramethylene glycol (PTMG) respectively. The organosilicon monomers were preparedby Grinard reaction, oxidation and esterification. The structures of the above monomers(I), (II) and the copolymers were characterized by MS anal. and;H-NMR.展开更多
Some physical properties of the polyester-polyeher multiblock copolymers with Si-containing hard segment were further examined by a series of physical methods. Thehydrophobicity of the copolymers was improved with the...Some physical properties of the polyester-polyeher multiblock copolymers with Si-containing hard segment were further examined by a series of physical methods. Thehydrophobicity of the copolymers was improved with the incorporation of increasing amountof organosilicone, XPS test proved that silicon element was enriched at the surface of theSi-containing polyeser-polyether copolymers. It was also found that their heat resistanceand gas permeability for O_2 and N_2 were greatly improved. The study on semipermeabilityof films made of the Si-containing copolymers was also followed with interest.展开更多
Organosilicon modified reduced graphene oxide(Mr GO) has been fabricated by direct organosilicon modification of graphene oxide(GO). Interestingly,it is observed that 3D rGO-like structures occurred after directly car...Organosilicon modified reduced graphene oxide(Mr GO) has been fabricated by direct organosilicon modification of graphene oxide(GO). Interestingly,it is observed that 3D rGO-like structures occurred after directly carrying out the organosilicon modification on the surface of GO. The obtained organosilicon Mr GO displays the more remarkable improvement of electrochemical performances than GO,which was verified by electrochemical measurements in detail. For instance,the organosilicon MrGO shows the cycling performances at 901 mA hg^-1 after 200 cycles at 0.1 Ag^-1 and 446 mA hg^-1 after 300 cycles at 2.0 Ag^-1,respectively. These results unveil that organic modification method is an effective way to improve the Li^+ storage capacity of general carbon materials.展开更多
文摘A series of Si-containing polyester-polyether multiblock copolymers were synthesizedby transesterification and melt copolycondensation of organosilicon monomers [1, 1, 3, 3-tetramethyl-1, 3-bis (p-carbomethoxyphenyl) disiloxane] (I ) or dimethyl bis (p-carbometh-oxyphenyl) silane] (II) and dimethyl terephthalate (DMT), with 1, 4-butanediol, poly-tetramethylene glycol (PTMG) respectively. The organosilicon monomers were preparedby Grinard reaction, oxidation and esterification. The structures of the above monomers(I), (II) and the copolymers were characterized by MS anal. and;H-NMR.
文摘Some physical properties of the polyester-polyeher multiblock copolymers with Si-containing hard segment were further examined by a series of physical methods. Thehydrophobicity of the copolymers was improved with the incorporation of increasing amountof organosilicone, XPS test proved that silicon element was enriched at the surface of theSi-containing polyeser-polyether copolymers. It was also found that their heat resistanceand gas permeability for O_2 and N_2 were greatly improved. The study on semipermeabilityof films made of the Si-containing copolymers was also followed with interest.
基金This work was supported by the University of Science and Technology Liaoning(Grant Nos.601009816-39 and 2017RC03)the National Natural Science Foundation of China(Grant Nos.51672117,51672118 and 51872131)。
文摘Organosilicon modified reduced graphene oxide(Mr GO) has been fabricated by direct organosilicon modification of graphene oxide(GO). Interestingly,it is observed that 3D rGO-like structures occurred after directly carrying out the organosilicon modification on the surface of GO. The obtained organosilicon Mr GO displays the more remarkable improvement of electrochemical performances than GO,which was verified by electrochemical measurements in detail. For instance,the organosilicon MrGO shows the cycling performances at 901 mA hg^-1 after 200 cycles at 0.1 Ag^-1 and 446 mA hg^-1 after 300 cycles at 2.0 Ag^-1,respectively. These results unveil that organic modification method is an effective way to improve the Li^+ storage capacity of general carbon materials.