To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of...To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.展开更多
Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain...Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain rates at 950 degrees C. The cyclic strain rates were chosen as 1.0 x 10(-2), 1.33 x 10(-3) and 0.33 x 10(-3) s(-1). The octahedral slip systems were confirmed to be activated on all the specimens. The experimental result shows that the fatigue behavior depends an the crystallographic orientation and cyclic strain rate. Except [0 0 1] orientation specimens, it is found from the scanning electron microscopy(SEM) examination that there are typical fatigue striations on the fracture surfaces. These fatigue striations are made up of cracks. The width of the fatigue striations depends on the crystallographic orientation and varies with the total strain range. A simple linear relationship exists between the width and total shear strain range modified by an orientation and strain rate parameter. The nonconformity to the Schmid law of tensile/compressive flaw stress and plastic behavior existed at 95 degrees C, and an orientation and strain rate modified Lall-Chin-Pope ( LCP) model was derived for the nonconformity. The influence of crysrallographic orientation and cyclic strain rate on the LCF behavior can be predicted satisfactorily by the model. In terms of an orientation and strain rate modified total strain range, a model for fatigue life was proposed and used successfully to correlate the fatigue lives studied.展开更多
The effect of the crystal orientations and precipitates on the corrosion behavior of Al-Cu-Li single crystals was studied by scanning electron microscopy, transmission electron microscopy, optical microscopy, immersio...The effect of the crystal orientations and precipitates on the corrosion behavior of Al-Cu-Li single crystals was studied by scanning electron microscopy, transmission electron microscopy, optical microscopy, immersion testing in exfoliation corrosion solution, and electrochemical testing. The results show that the corrosion rates of different orientations of the aged Al-Cu-Li alloy increase in the order of (001) 1 phase deteriorated the corrosion resistance of the Al-Cu-Li alloy, and the degree of deterioration differed in different crystal plane orientations. The severe localized corrosion of the aged alloy propagates along the crystallography and extends along the {111}Alplane in the form of corrosion bands.展开更多
The Ni-base single crystal superalloy was bonded by the transient liquid phase (TLP) bonding, using a Ni-base flexible metal cloth as an insert alloy. TLP bonding of superalloy was carried out at 1473-1523 K for 0.5-2...The Ni-base single crystal superalloy was bonded by the transient liquid phase (TLP) bonding, using a Ni-base flexible metal cloth as an insert alloy. TLP bonding of superalloy was carried out at 1473-1523 K for 0.5-24 h in vacuum. The [001] orientation of each test specimen was aligned perpendicular to the joint interface. The bonded region was observed by optical microscopy, and the microstructural and compositional analyses across the bonded interlayer were performed by using a scanning electron microscopy (SEM). The electron back scattering diffraction (EBSD) method was applied to determine the crystallographic orientation. The results indicated that the chemical homogeneity across the bonded region can be achieved, and γ' phase both in the bonded interlayer and in the superalloy substrate is almost identical, while the bonded interlayer had almost matched the crystallographic orientation of the bonded substrates.展开更多
The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important e...The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.展开更多
The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of t...The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of the number of cycles were plotted. With the increase of peak temperature, the crack initiation life was shortened dramatically. Through optical microscopy (OM) and scanning electron microscopy (SEM) observation, it was found that multiple small cracks nucleated at the notch tip region but only one or two of them continued to develop in the following thermal cycles. The primary cracks generally propagated along a preferential direction. Microstructure changes after thermal fatigue were also discussed on the basis of SEM observation.展开更多
Copper single crystal specimens with the longitudinal axis parallel to the [013] double-slip-orientation were grown through Bridgman technique. The fatigue tests were performed using a symmetric tension-compression lo...Copper single crystal specimens with the longitudinal axis parallel to the [013] double-slip-orientation were grown through Bridgman technique. The fatigue tests were performed using a symmetric tension-compression load mode at room temperature in an open-air and a 0.5 mol/L NaCl solution, respectively. The dislocation microstructures were observed with scanning electron microscopy (SEM) by the electron channeling contrast (ECC) and transmission electron microscopy (TEM). The results show that the saturation dislocation microstructures during the corrosion fatigue in the aqueous solution of 0.5 mol/L NaCI, mainly consisted of labyrinth, wall and vein dislocation structures, which differs from the dislocation structures of the walls and veins in an open-air environment.展开更多
Cyclic stress-strain responses and dislocation structure of copper single crystals with various tensile axes were systematically studied and compared with each other.Experimental results reveal that the evolution of m...Cyclic stress-strain responses and dislocation structure of copper single crystals with various tensile axes were systematically studied and compared with each other.Experimental results reveal that the evolution of microscopic dislocation configurations in a crystal and, accordingly,its macroscopic cyclic behaviours are closely related with its orientation.Re- markable secondary slip has been observed in some crystals with orientations well inside the crystallographic triangle, which are usually considered as single-slip ones.Their cyclio behaviours and dislocation structures at saturation are similar to those of their neighbouring multi-slip crystals.These results have constructed the experimental basis for the newly pro- posed dislocation interaction model Jor cyclic deformation of fee crystals,which will be des- cribed in the second part of this article.展开更多
Crystallographic texture control is a major challenge in directionally solidified multiphase eutectic ceramics with complex faceted growth characteristics.In this study,the Czochralski(CZ)technique is proposed to prep...Crystallographic texture control is a major challenge in directionally solidified multiphase eutectic ceramics with complex faceted growth characteristics.In this study,the Czochralski(CZ)technique is proposed to prepare eutectic single crystal ceramic with large size(30 mm×125 mm).A highly oriented and unique texture of Al_(2)O_(3)/Y_(3)Al_(5)O_(12)(YAG)eutectic ceramic is formed via the 112¯0Al_(2)O_(3) single crystal seed induction based on crystallographic orientation tailoring.The orientations of Al_(2)O_(3)/YAG eutectic are more strictly constrained by single crystal seed induction on the basis of the minimum interface energy principle,resulting in a defined single orientation relationship along the solidification direction.In particular,the single crystallographic orientation can be obtained in a short competitive solidification distance under the influence of epitaxial solidification from single crystal seed.Therefore,it has been confirmed that the orientations of 112¯0Al_(2)O_(3) and 111YAG are preferentially stabilized with the minimum under-cooling during directional solidification.Crystallographic orientation disturbances and instabilities due to polycrystalline crystal seed are avoided.Finally,the successful texture control inducted by 112¯0Al_(2)O_(3) single crystal seed can provide a promising orientation design pathway for faced oxide eutectic solidification.展开更多
The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics(MD) simulations.The results indicated that the def...The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics(MD) simulations.The results indicated that the deformation process of iridium single crystals with [100]and [110] orientations was presented as the stacking faults expansion and the formation of Lomer-Cottrell locks.And the occurrence of Lomer-Cottrell locks was considered as the interaction of stacking faults on {111} planes by MD simulations.The evolution of crystal structure in compression indicated that the Lomer-Cottrell locks might contribute to the large plastic deformation of iridium single crystals.Moreover,the deformation features in MD simulations showed that the elastic modulus(E) and yield stress(σ_(s)) of iridium single crystals were significantly influenced by the temperature.The elastic modulus and yield stress gradually decreased with an increased temperature for all orientations.Meanwhile,the single crystal with a closely spaced lattice structure exhibited superior mechanical properties at a same temperature.展开更多
Molecular dynamics simulation was employed to study the tensile behavior of single crystal titanium nanowires(NWs)with[112^-0],[1^-100] and[0001]orientations at different strain rates from 10^8s^-1 to 10^11s^-1.When...Molecular dynamics simulation was employed to study the tensile behavior of single crystal titanium nanowires(NWs)with[112^-0],[1^-100] and[0001]orientations at different strain rates from 10^8s^-1 to 10^11s^-1.When strain rates are above 10^10s^-1,the state transformation from HCP structure to amorphous state leads to super plasticity of Ti NWs,which is similar to FCC NWs.When strain rates are below 10^10s^-1,deformation mechanisms of Ti NWs show strong dependence on orientation.For [112^-0] orientated NW.{101^-1} compression twins(CTs)and the frequently activated transformation between CTs and deformation faults lead to higher plasticity than the other two orientated NWs.Besides,tensile deformation process along [112^-0] orientation is insensitive to strain rate.For [1^-100] orientated NW,prismaticslip is the main deformation mode at 10^8s^-1.As the strain rate increases,more types of dislocations are activated during plastic deformation process.For[0001]orientated NW,{101^-2} extension twinning is the main deformation mechanism,inducing the yield stress of [0001] orientated NW,which has the highest strain rate sensitivity.The number of initial nucleated twins increases while the saturation twin volume fraction decreases nonlinearly with increasing strain rate.展开更多
Angle deviations between the two substrates during transient liquid phase (TLP) bonding single crystal superalloys cannot be avoided. In the present work, specimens have been prepared to investigate the influences o...Angle deviations between the two substrates during transient liquid phase (TLP) bonding single crystal superalloys cannot be avoided. In the present work, specimens have been prepared to investigate the influences of the various substrate orientations. It is found that the width of the non-isothermal solidification zone (NSZ) is linear with the square root of the isothermal solidification time. This suggests that the isothermal solidification process is B-diffusion controlled in different substrate orientation deviations. And also the width of the NSZ increases with increasing angle deviation, indicating that the isothermal solidification time needed in the TLP bonding increases with increasing orientation deviation between the two substrates.展开更多
The morphology and orientation evolution of Cu_(6)Sn_(5)grains formed on(001)Cu and(011)Cu single crystal substrates under temperature gradient(TG)were investigated.The initial orientated prism-type Cu_(6)Sn_(5)grains...The morphology and orientation evolution of Cu_(6)Sn_(5)grains formed on(001)Cu and(011)Cu single crystal substrates under temperature gradient(TG)were investigated.The initial orientated prism-type Cu_(6)Sn_(5)grains transformed to non-orientated scallop-type after isothermal reflow.However,the Cu_(6)Sn_(5)grains with strong texture were revealed on cold end single crystal Cu substrates by imposing TG.The Cu_(6)Sn_(5)grains on(001)Cu grew along their c-axis parallel to the substrate and finally merged into one grain to form a fully IMC joint,while those on(011)Cu presented a strong texture and merged into a few dominant Cu_(6)Sn_(5)grains showing about 30°angle with the substrate.The merging between neighboring Cu_(6)Sn_(5)grain pair was attributed to the rapid grain growth and grain boundary migration.Accordingly,a model was put forward to describe the merging process.The different morphology and orientation evolutions of the Cu_(6)Sn_(5)grains on single crystal and polycrystal Cu substrates were revealed based on crystallographic relationship and Cu flux.The method for controlling the morphology and orientation of Cu_(6)Sn_(5)grains is really benefitial to solve the reliability problems caused by anisotropy in 3 D packaging.展开更多
The orientation dependence of creep rupture lives of a single crystal superalloy at 760℃/760 MPa was investigated.The orientations of the specimens tested were about 30°away from [001].The results showed that sp...The orientation dependence of creep rupture lives of a single crystal superalloy at 760℃/760 MPa was investigated.The orientations of the specimens tested were about 30°away from [001].The results showed that specimens with orientations on the [001]-[011] boundary had the longest rupture life.The deformation of these specimen were controlled by a/2〈110〉 slip and a few stacking faults with two orientations were observed.On the other hand,specimens with orientations near the [001]-[011] boundary or on the [001]-[111] boundary showed short rupture lives,and stacking faults with single orientation were observed in these specimens.The rupture properties and the deformation mechanisms were discussed based on the dislocation pattern and the calculated Schmid factors for different specimens.展开更多
In order to understand the possible mechanisms responsible for the superconductivity of high T_c oxides, the study of their structures and physical properties is in progress worldwide. The samples investigated are bei...In order to understand the possible mechanisms responsible for the superconductivity of high T_c oxides, the study of their structures and physical properties is in progress worldwide. The samples investigated are being changed from polycrystallines to single crys-展开更多
Cu single crystals were subjected to dynamic compression plastic deformation to investigate orientation- dependent twinning. The experimental results showed that twinning is closely related to the ratio of the maximum...Cu single crystals were subjected to dynamic compression plastic deformation to investigate orientation- dependent twinning. The experimental results showed that twinning is closely related to the ratio of the maximum Schmid factor for twinning partial (mt) to the maximum Schmid factor for perfect dislocation (ms), i.e., mT/ms, rather than roT. The twin volume fraction VT increases with the rot/ms value and the most favorable orientation for twinning has the maximum roT/ms value (1.15). The relationships of roT/ms with both effective stacking fault energy γeff and threshold stress for twinning TT were established for under- standing orientation-dependent twinning. Further insights into the orientation-dependent twinning and guidance for developing bulk high density nanotwinned materials are provided.展开更多
基金Project (51074105) supported by the National Natural Science Foundation of ChinaProjects (08DZ1130100, 10520706400) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (2007CB613606) supported by the National Basic Research Program of China
文摘To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.
文摘Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain rates at 950 degrees C. The cyclic strain rates were chosen as 1.0 x 10(-2), 1.33 x 10(-3) and 0.33 x 10(-3) s(-1). The octahedral slip systems were confirmed to be activated on all the specimens. The experimental result shows that the fatigue behavior depends an the crystallographic orientation and cyclic strain rate. Except [0 0 1] orientation specimens, it is found from the scanning electron microscopy(SEM) examination that there are typical fatigue striations on the fracture surfaces. These fatigue striations are made up of cracks. The width of the fatigue striations depends on the crystallographic orientation and varies with the total strain range. A simple linear relationship exists between the width and total shear strain range modified by an orientation and strain rate parameter. The nonconformity to the Schmid law of tensile/compressive flaw stress and plastic behavior existed at 95 degrees C, and an orientation and strain rate modified Lall-Chin-Pope ( LCP) model was derived for the nonconformity. The influence of crysrallographic orientation and cyclic strain rate on the LCF behavior can be predicted satisfactorily by the model. In terms of an orientation and strain rate modified total strain range, a model for fatigue life was proposed and used successfully to correlate the fatigue lives studied.
基金the financial support from the National Natural Science Foundation of China (No. 51961013)the Natural Science Foundation of Jiangxi Province, China (No. 20202ACBL214002)+2 种基金the China Postdoctoral Science Foundation (Nos. 2019M660159 and 2020T130093)the Postdoctoral Science Foundation of Jiangxi Province, China (No. 2019KY25)the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology, China (No. JXUSTQJYX2020022)。
文摘The effect of the crystal orientations and precipitates on the corrosion behavior of Al-Cu-Li single crystals was studied by scanning electron microscopy, transmission electron microscopy, optical microscopy, immersion testing in exfoliation corrosion solution, and electrochemical testing. The results show that the corrosion rates of different orientations of the aged Al-Cu-Li alloy increase in the order of (001) 1 phase deteriorated the corrosion resistance of the Al-Cu-Li alloy, and the degree of deterioration differed in different crystal plane orientations. The severe localized corrosion of the aged alloy propagates along the crystallography and extends along the {111}Alplane in the form of corrosion bands.
文摘The Ni-base single crystal superalloy was bonded by the transient liquid phase (TLP) bonding, using a Ni-base flexible metal cloth as an insert alloy. TLP bonding of superalloy was carried out at 1473-1523 K for 0.5-24 h in vacuum. The [001] orientation of each test specimen was aligned perpendicular to the joint interface. The bonded region was observed by optical microscopy, and the microstructural and compositional analyses across the bonded interlayer were performed by using a scanning electron microscopy (SEM). The electron back scattering diffraction (EBSD) method was applied to determine the crystallographic orientation. The results indicated that the chemical homogeneity across the bonded region can be achieved, and γ' phase both in the bonded interlayer and in the superalloy substrate is almost identical, while the bonded interlayer had almost matched the crystallographic orientation of the bonded substrates.
基金Project(51074105)supported by the National Natural Science Foundation of ChinaProjects(08DZ1130100,10520706400)supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.
文摘The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of the number of cycles were plotted. With the increase of peak temperature, the crack initiation life was shortened dramatically. Through optical microscopy (OM) and scanning electron microscopy (SEM) observation, it was found that multiple small cracks nucleated at the notch tip region but only one or two of them continued to develop in the following thermal cycles. The primary cracks generally propagated along a preferential direction. Microstructure changes after thermal fatigue were also discussed on the basis of SEM observation.
文摘Copper single crystal specimens with the longitudinal axis parallel to the [013] double-slip-orientation were grown through Bridgman technique. The fatigue tests were performed using a symmetric tension-compression load mode at room temperature in an open-air and a 0.5 mol/L NaCl solution, respectively. The dislocation microstructures were observed with scanning electron microscopy (SEM) by the electron channeling contrast (ECC) and transmission electron microscopy (TEM). The results show that the saturation dislocation microstructures during the corrosion fatigue in the aqueous solution of 0.5 mol/L NaCI, mainly consisted of labyrinth, wall and vein dislocation structures, which differs from the dislocation structures of the walls and veins in an open-air environment.
文摘Cyclic stress-strain responses and dislocation structure of copper single crystals with various tensile axes were systematically studied and compared with each other.Experimental results reveal that the evolution of microscopic dislocation configurations in a crystal and, accordingly,its macroscopic cyclic behaviours are closely related with its orientation.Re- markable secondary slip has been observed in some crystals with orientations well inside the crystallographic triangle, which are usually considered as single-slip ones.Their cyclio behaviours and dislocation structures at saturation are similar to those of their neighbouring multi-slip crystals.These results have constructed the experimental basis for the newly pro- posed dislocation interaction model Jor cyclic deformation of fee crystals,which will be des- cribed in the second part of this article.
基金supported by the National Natural Science Foundation of China(Nos.52130204,52174376 and 51822405)the Guangdong Basic and Applied Basic Research Foundation(No.21201910250000848)+4 种基金the Science and Technology Innovation Team Plan of Shaan Xi Province(No.2021TD-17)the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(No.2020GXLH-Z-024)The Youth Innovation Team of Shaanxi Universities,the Key R&D Program of Shaanxi Province(No.2019ZDLGY 04-04)the Fundamental Research Funds for the Central Universities(No.D5000210902)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Nos.CX2021056,CX2021066 and CX2022033),China.
文摘Crystallographic texture control is a major challenge in directionally solidified multiphase eutectic ceramics with complex faceted growth characteristics.In this study,the Czochralski(CZ)technique is proposed to prepare eutectic single crystal ceramic with large size(30 mm×125 mm).A highly oriented and unique texture of Al_(2)O_(3)/Y_(3)Al_(5)O_(12)(YAG)eutectic ceramic is formed via the 112¯0Al_(2)O_(3) single crystal seed induction based on crystallographic orientation tailoring.The orientations of Al_(2)O_(3)/YAG eutectic are more strictly constrained by single crystal seed induction on the basis of the minimum interface energy principle,resulting in a defined single orientation relationship along the solidification direction.In particular,the single crystallographic orientation can be obtained in a short competitive solidification distance under the influence of epitaxial solidification from single crystal seed.Therefore,it has been confirmed that the orientations of 112¯0Al_(2)O_(3) and 111YAG are preferentially stabilized with the minimum under-cooling during directional solidification.Crystallographic orientation disturbances and instabilities due to polycrystalline crystal seed are avoided.Finally,the successful texture control inducted by 112¯0Al_(2)O_(3) single crystal seed can provide a promising orientation design pathway for faced oxide eutectic solidification.
基金financially supported by the National Key R&D Program of China (No. 2017YFB0305503)the Joint Funds of the National Natural Science Foundation of China (No. U1202273)the National Natural Science Foundation of China (No. 51501075)。
文摘The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics(MD) simulations.The results indicated that the deformation process of iridium single crystals with [100]and [110] orientations was presented as the stacking faults expansion and the formation of Lomer-Cottrell locks.And the occurrence of Lomer-Cottrell locks was considered as the interaction of stacking faults on {111} planes by MD simulations.The evolution of crystal structure in compression indicated that the Lomer-Cottrell locks might contribute to the large plastic deformation of iridium single crystals.Moreover,the deformation features in MD simulations showed that the elastic modulus(E) and yield stress(σ_(s)) of iridium single crystals were significantly influenced by the temperature.The elastic modulus and yield stress gradually decreased with an increased temperature for all orientations.Meanwhile,the single crystal with a closely spaced lattice structure exhibited superior mechanical properties at a same temperature.
基金the financial supports of the National Natural Science Foundation of China (Nos.51475223,51675260)the Graduate Student Scientific Innovative Project of Jiangsu Province (No.KYLX16 0595)
文摘Molecular dynamics simulation was employed to study the tensile behavior of single crystal titanium nanowires(NWs)with[112^-0],[1^-100] and[0001]orientations at different strain rates from 10^8s^-1 to 10^11s^-1.When strain rates are above 10^10s^-1,the state transformation from HCP structure to amorphous state leads to super plasticity of Ti NWs,which is similar to FCC NWs.When strain rates are below 10^10s^-1,deformation mechanisms of Ti NWs show strong dependence on orientation.For [112^-0] orientated NW.{101^-1} compression twins(CTs)and the frequently activated transformation between CTs and deformation faults lead to higher plasticity than the other two orientated NWs.Besides,tensile deformation process along [112^-0] orientation is insensitive to strain rate.For [1^-100] orientated NW,prismaticslip is the main deformation mode at 10^8s^-1.As the strain rate increases,more types of dislocations are activated during plastic deformation process.For[0001]orientated NW,{101^-2} extension twinning is the main deformation mechanism,inducing the yield stress of [0001] orientated NW,which has the highest strain rate sensitivity.The number of initial nucleated twins increases while the saturation twin volume fraction decreases nonlinearly with increasing strain rate.
基金financially supported by the National Basic Research Program (973 Program) of China under Grant Nos. 2010CB631200 and 2010CB631206the National Natural Science Foundation of China (NSFC) under Grant Nos. 50971124, 50904059, 51071165 and 51204156
文摘Angle deviations between the two substrates during transient liquid phase (TLP) bonding single crystal superalloys cannot be avoided. In the present work, specimens have been prepared to investigate the influences of the various substrate orientations. It is found that the width of the non-isothermal solidification zone (NSZ) is linear with the square root of the isothermal solidification time. This suggests that the isothermal solidification process is B-diffusion controlled in different substrate orientation deviations. And also the width of the NSZ increases with increasing angle deviation, indicating that the isothermal solidification time needed in the TLP bonding increases with increasing orientation deviation between the two substrates.
基金financially supported by the National Natural Science Foundation of China(Nos.52075072)the Fundamental Research Funds for the Central Universities(No.DUT20JC46)。
文摘The morphology and orientation evolution of Cu_(6)Sn_(5)grains formed on(001)Cu and(011)Cu single crystal substrates under temperature gradient(TG)were investigated.The initial orientated prism-type Cu_(6)Sn_(5)grains transformed to non-orientated scallop-type after isothermal reflow.However,the Cu_(6)Sn_(5)grains with strong texture were revealed on cold end single crystal Cu substrates by imposing TG.The Cu_(6)Sn_(5)grains on(001)Cu grew along their c-axis parallel to the substrate and finally merged into one grain to form a fully IMC joint,while those on(011)Cu presented a strong texture and merged into a few dominant Cu_(6)Sn_(5)grains showing about 30°angle with the substrate.The merging between neighboring Cu_(6)Sn_(5)grain pair was attributed to the rapid grain growth and grain boundary migration.Accordingly,a model was put forward to describe the merging process.The different morphology and orientation evolutions of the Cu_(6)Sn_(5)grains on single crystal and polycrystal Cu substrates were revealed based on crystallographic relationship and Cu flux.The method for controlling the morphology and orientation of Cu_(6)Sn_(5)grains is really benefitial to solve the reliability problems caused by anisotropy in 3 D packaging.
基金sponsored by the National Basic Research Program of China (Grant No. 2010CB631201)the National Natural Science Foundation of China (Grant Nos. 50931004,51171193,50901079)
文摘The orientation dependence of creep rupture lives of a single crystal superalloy at 760℃/760 MPa was investigated.The orientations of the specimens tested were about 30°away from [001].The results showed that specimens with orientations on the [001]-[011] boundary had the longest rupture life.The deformation of these specimen were controlled by a/2〈110〉 slip and a few stacking faults with two orientations were observed.On the other hand,specimens with orientations near the [001]-[011] boundary or on the [001]-[111] boundary showed short rupture lives,and stacking faults with single orientation were observed in these specimens.The rupture properties and the deformation mechanisms were discussed based on the dislocation pattern and the calculated Schmid factors for different specimens.
文摘In order to understand the possible mechanisms responsible for the superconductivity of high T_c oxides, the study of their structures and physical properties is in progress worldwide. The samples investigated are being changed from polycrystallines to single crys-
基金Financial supports from the National Natural Science Foundation of China(Grant No.51371172)the Ministry of Science and Technology of People’s Republic of China(Grant No.2012CB932201)
文摘Cu single crystals were subjected to dynamic compression plastic deformation to investigate orientation- dependent twinning. The experimental results showed that twinning is closely related to the ratio of the maximum Schmid factor for twinning partial (mt) to the maximum Schmid factor for perfect dislocation (ms), i.e., mT/ms, rather than roT. The twin volume fraction VT increases with the rot/ms value and the most favorable orientation for twinning has the maximum roT/ms value (1.15). The relationships of roT/ms with both effective stacking fault energy γeff and threshold stress for twinning TT were established for under- standing orientation-dependent twinning. Further insights into the orientation-dependent twinning and guidance for developing bulk high density nanotwinned materials are provided.