The investigation aims to understand how external forces influence tectonic plate movement, causing earthquakes and volcanic eruptions. Our emphasis was on calculating perigee forces at various moon-Earth distances. O...The investigation aims to understand how external forces influence tectonic plate movement, causing earthquakes and volcanic eruptions. Our emphasis was on calculating perigee forces at various moon-Earth distances. Our initial concern is the fluctuating perigee distance between the Moon and Earth. Later, we will cover Earth’s mass fluctuations caused by crustal inhomogeneity. Gravitational force depends on distance and Earth’s mass variations. Wobbling’s Earth and translation around Sun are additional factors. Tidal variations from the Moon trigger subduction zone earthquakes. Volcanoes in the Ring of Fire are influenced by plate movement on fractures and faults.展开更多
One of the most efficient ways to probe the lunar inner structure at present is through the study of its rotation.Range and range rate(Doppler) data between the Chang’E-3 lander and station on the Earth were collecte...One of the most efficient ways to probe the lunar inner structure at present is through the study of its rotation.Range and range rate(Doppler) data between the Chang’E-3 lander and station on the Earth were collected from the beginning of the Chang’E-3 lunar mission in 2013.These observation data,taken together with the existing lunar laser ranging data,provide a new approach to extend research on the Earth-Moon system.The high precision of current observation data imposes exacting demands,making it necessary to include previously neglected factors.In this paper,motivated by progress of the Chinese lunar exploration project and to use its data in the near future,two lunar models:a one-layer model and a two-layer model with a fluid core,were applied to the rotational equations based on our implemented algorithm of the Moon’s motion.There was a difference of about 0.5′′in φ and ψ,but 0.2′′in θ between the two models.This result confirms that stratification of the inner structure of the Moon can be inferred from rotation data.We also added precise Earth rotation parameters in our model;the results show that this factor is negligible at present,due to the limited precision of the existing data.These results will help us understand the rotational process clearly and build a more realistic Earth-Moon model when we combine Lunar Laser Ranging data with high precision radio data to fit lunar motion in the near future.展开更多
Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by ...Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by performing a perigee maneuver.A low-energy transfer in Sun-EarthMoon system is adopted.First,the feasible region of lowenergy transfer from lunar orbit to perigee within 5 000 km height above the Earth surface in Sun-Earth-Moon system is calculated and analyzed.Three transfer types are found,i.e.,large maneuver and fast transfers,small maneuver and fast transfers,and disordered and slow transfers.Most of feasibility trajectories belong to the first two types.Then,the lowenergy trajectory leg from lunar orbit to perigee and a heliocentric trajectory leg from perigee to asteroid are patched by a perigee maneuver.The optimal full-transfer trajectory is obtained by exploiting the differential evolution algorithm.Finally,taking 4179 Toutatis asteroid as the target,some low-energy transfer trajectories are obtained and analyzed.展开更多
In this paper we present an approach for forecasting the imminent regional seismic activity by using geomagnetic data and Earth tide data. The time periods of seismic activity are the time periods around the Sun-Moon ...In this paper we present an approach for forecasting the imminent regional seismic activity by using geomagnetic data and Earth tide data. The time periods of seismic activity are the time periods around the Sun-Moon extreme of the diurnal average value of the tide vector module. For analyzing the geomagnetic data behaviour we use diurnal standard deviation of geomagnetic vector components F (North, East, Down) for calculating the time variance GeomagSignal. The Sun storm influence is avoided by using data for daily A-indexes (published by NOAA). The precursor signal for forecasting the incoming regional seismic activity is a simple function of the present and previous day GeomagSignal and A-indexes values. The reliability of the geomagnetic “when, regional” precursor is demonstrated by using statistical analysis of day difference between the times of “predicted” and occurred earthquakes. The base of the analysis is a natural hypothesis that the “predicted” earthquake is the one whose surface energy density in the monitoring point is bigger than the energy densities of all occurred earthquakes in the same period and region. The reliability of the approach was tested using the INTERMAGNET stations data located in Bulgaria, Panagurishte, PAG (Jan 1, 2008-Jan 29, 2014), Romania, Surlari, SUA (Jan 1, 2008-Jan 27, 2014), Italy, L’Aquila, AQU (Jan 1, 2008-May 30, 2013) in the time of EU IRSES BlackSeaHazNet (2011-2014) project. The steps of program for solving the “when, where and how” earthquake prediction problem are shortly described.展开更多
Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fa...Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.展开更多
The start of the Earth-Moon system has been studied to show that this was an exceptionally violent event. One result was that Earth became the terrestrial planet with the highest average density. Another result was th...The start of the Earth-Moon system has been studied to show that this was an exceptionally violent event. One result was that Earth became the terrestrial planet with the highest average density. Another result was that Earth acquired enough mass and radioactive elements that it is expected to maintain a molten core region and magnetic field for the expected life of the Earth. Earth alone of the terrestrial planets was then able to develop plate tectonics as a long term energy release mechanism. The dipole magnetic field of the Sun reverses periodically, currently at the rate of about every 11 years, so that there was a magnetic braking action acting on the core of Venus that accounts for the slow rotation of that planet. A key result is that the impact event that resulted in the Earth-Moon system led to long term stability on Earth that allowed the eventual development of complex life forms on the Earth.展开更多
Observations of the sky irradiation intensity in the visible wavelengths during a solar eclipse permit to model the Sun diameter,a key number to constrain the internal structure of our star.In this paper,we present an...Observations of the sky irradiation intensity in the visible wavelengths during a solar eclipse permit to model the Sun diameter,a key number to constrain the internal structure of our star.In this paper,we present an algorithm that takes advantage of the precise Moon topography from Lunar Reconnaissance Orbiter to compute,with a high resolution in time,the geometrical part(i.e.top-of-atmosphere,and for a given wavelength)of the sky irradiation at any given location on the Earth during these events.The algorithm is also able to model the Baily’s beads.We give as an application the theoretical computation of the light curve corresponding to the solar eclipse observed at Lakeland(Queensland,North Australia)on 2012 November 13.The application to real data,with the introduction of atmospheric and instrumental passbands,will be considered in a forthcoming paper.展开更多
1.Wang Xiaoer came out ofa bar,drunk.2.He raised his head andlooked up into the sky.3. There was a roundball shining.He won-dered:'What's that inthe sky?'
The aim of this paper is to continue analyzing the interactions in the three-body system made up of the Sun, the Moon, and the Earth. First, we review new details about Moon-Earth connections, with a special focus on ...The aim of this paper is to continue analyzing the interactions in the three-body system made up of the Sun, the Moon, and the Earth. First, we review new details about Moon-Earth connections, with a special focus on mechanical forces. Following, we expand the study to consider the pair Sun-Earth, with calculations for electromagnetic forces. The objective in both cases is to know how mechanical and electromagnetic forces affect seismological events on Earth. Our calculations found that Solar Cycles have no direct interaction with earthquake variations. Instead, we established that there is an internal discrepancy for quakes below 35 km detected in some of the regions analyzed. The results indicate that geomagnetic variations must be studied next to understand their connections to earthquakes.展开更多
Having found some orbit variation mechanisms of natural satellites and planets, the author has revealed the formation and evolution law of the Moon. According to this law, the author has further revealed the formation...Having found some orbit variation mechanisms of natural satellites and planets, the author has revealed the formation and evolution law of the Moon. According to this law, the author has further revealed the formation and evolution law of the Solar System and other galaxies in the universe. Especially, the author has also explained why the eight planets around the Sun are prograde planets, why the orbits of the eight planets almost lie in the same plane, and why most planets rotate around their own axes from west to east. Additionally, the author could also explain the expansion of the universe as well as the cause of global climate change.展开更多
Every year on 22 April, we have celebrated Earth Day and the beautiful planet we call home. Earth Day, established in 1970, has been used to highlight our planet’s environmental challenges and raise awareness of the ...Every year on 22 April, we have celebrated Earth Day and the beautiful planet we call home. Earth Day, established in 1970, has been used to highlight our planet’s environmental challenges and raise awareness of the importance of protecting our world for future generations [1]. To provide the protection of our planet, we should explain Earth’s environmental challenges to the best of our knowledge in frames of contemporary Geophysics. This paper gives a short overview of the developed Hypersphere World-Universe Model (WUM) and pay particular attention to the principal role of Dark Matter (DM) in the Earth’s life. In this manuscript, we discuss different aspects of the Earth: a condition of Young Earth before the Beginning of life on It;Internal Structure;“The 660-km Boundary” that we named Geomagma;Random Variations of Earth’s Rotational Speed on a daily basis;Origin of Moon;Expanding Earth;Internal Heating;Faint Young Sun paradox;Geocorona and Planetary Coronas;High-Energy Atmospheric Physics. WUM proposed principally different ways to solve the problems of Internal Heating, Origin of the Moon, and Faint Young Sun paradox based on DM core of the Earth. The Model revealed the fact that the Sun Activity causes the Geomagma Activity and, as a consequence, Random Variations of Earth’s Rotational Speed by the varying Sun’s magnetic field.展开更多
Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. Accordin...Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. According to Kepler’s 1st Law, “orbit of a planet with respect to the Sun is an ellipse, with the Sun at one of the two foci.” Orbit of the Moon with respect to Earth is also distinctly elliptical, but this ellipse has a varying eccentricity as the Moon comes closer to and goes farther away from the Earth in a harmonic style along a full cycle of this ellipse. In this paper, our research results are summarized, where it is first mathematically shown that the “distance between points around any two different circles in three-dimensional space” is equivalent to the “distance of points around a vector ellipse to another fixed or moving point, as in two-dimensional space”. What is done is equivalent to showing that bodies moving on two different circular orbits in space vector-wise behave as if moving on an elliptical path with respect to each other, and virtually seeing each other as positioned at an instantaneously stationary point in space on their relative ecliptic plane, whether they are moving with the same angular velocity, or different but fixed angular velocities, or even with different and changing angular velocities with respect to their own centers of revolution. This mathematical revelation has the potential to lead to far reaching discoveries in physics, enabling more insight into forces of nature, with a formulation of a new fundamental model regarding the motions of bodies in the Universe, including the Sun, Planets, and Satellites in the Solar System and elsewhere, as well as at particle and subatomic level. Based on the demonstrated mathematical analysis, as they exhibit almost fixed elliptic orbits relative to one another over time, the assertion is made that the Sun, the Earth, and the Moon must each be revolving in their individual circular orbits of revolution in space. With this expectation, individual orbital parameters of the Sun, the Earth, and the Moon are calculated based on observed Earth to Sun and Earth to Moon distance data, also using analytical methods developed as part of this research to an approximation. This calculation and analysis process have revealed additional results aligned with observation, and this also supports our assertion that the Sun, the Earth, and the Moon must actually be revolving in individual circular orbits.展开更多
The aim of this investigation is to find possible changes in ultra-deep earthquakes (UDQ) during different seasons of the year. In the acquisition of data for our previous work we observed an inexplicable pattern of g...The aim of this investigation is to find possible changes in ultra-deep earthquakes (UDQ) during different seasons of the year. In the acquisition of data for our previous work we observed an inexplicable pattern of growth of ultra-deep tremors (UDQ) during the studied period. Apparently, there is no viable explanation for growth occurring at such a level, presumably in the asthenosphere. Current research and theories developed for the inner layers of the Earth do not explain such variations. Therefore, a possible explanation would be in external factors such as the seasons of the year, which are determined by changes in the Earth’s axial tilt, and therefore the portion of the earth that is angled toward the sun. This paper focuses exclusively on UDQ events. To simplify the calculations, we consider four main locations;this includes one more region than our previous paper but includes only UDQ data. The results showed that during spring and autumn UDQ events grew slightly in both Northern and Southern Hemispheres. It is also suggested that a contributor to UDQ events is friction from the subducting lithosphere against the continental plates.展开更多
文摘The investigation aims to understand how external forces influence tectonic plate movement, causing earthquakes and volcanic eruptions. Our emphasis was on calculating perigee forces at various moon-Earth distances. Our initial concern is the fluctuating perigee distance between the Moon and Earth. Later, we will cover Earth’s mass fluctuations caused by crustal inhomogeneity. Gravitational force depends on distance and Earth’s mass variations. Wobbling’s Earth and translation around Sun are additional factors. Tidal variations from the Moon trigger subduction zone earthquakes. Volcanoes in the Ring of Fire are influenced by plate movement on fractures and faults.
基金supported by LIESMARS Special Research Fundingthe National Natural Science Foundation of China(U1831132,41590851,11373060,10973030 and 10778635)+3 种基金the State Key Project for Science and Technology(2015CB857101)National Astronomical Observatories,Chinese Academy of Sciences,a grant from the Hubei Province Natural Science(2018CFA087)Open Project of Lunar and Planetary Science Laboratory,Macao University of Science and Technology(FDCT 119/2017/A3)Open Funding of Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing(KF201813)
文摘One of the most efficient ways to probe the lunar inner structure at present is through the study of its rotation.Range and range rate(Doppler) data between the Chang’E-3 lander and station on the Earth were collected from the beginning of the Chang’E-3 lunar mission in 2013.These observation data,taken together with the existing lunar laser ranging data,provide a new approach to extend research on the Earth-Moon system.The high precision of current observation data imposes exacting demands,making it necessary to include previously neglected factors.In this paper,motivated by progress of the Chinese lunar exploration project and to use its data in the near future,two lunar models:a one-layer model and a two-layer model with a fluid core,were applied to the rotational equations based on our implemented algorithm of the Moon’s motion.There was a difference of about 0.5′′in φ and ψ,but 0.2′′in θ between the two models.This result confirms that stratification of the inner structure of the Moon can be inferred from rotation data.We also added precise Earth rotation parameters in our model;the results show that this factor is negligible at present,due to the limited precision of the existing data.These results will help us understand the rotational process clearly and build a more realistic Earth-Moon model when we combine Lunar Laser Ranging data with high precision radio data to fit lunar motion in the near future.
基金supported by the National Basic Research Programof China(973 Program)(2012CB720000)the National Natural Science Foundation of China(11102020)+1 种基金Program for New Century Excellent Talents in UniversityBeijing Higher Education Young Elite Teacher Project and China Scholarship Council
文摘Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by performing a perigee maneuver.A low-energy transfer in Sun-EarthMoon system is adopted.First,the feasible region of lowenergy transfer from lunar orbit to perigee within 5 000 km height above the Earth surface in Sun-Earth-Moon system is calculated and analyzed.Three transfer types are found,i.e.,large maneuver and fast transfers,small maneuver and fast transfers,and disordered and slow transfers.Most of feasibility trajectories belong to the first two types.Then,the lowenergy trajectory leg from lunar orbit to perigee and a heliocentric trajectory leg from perigee to asteroid are patched by a perigee maneuver.The optimal full-transfer trajectory is obtained by exploiting the differential evolution algorithm.Finally,taking 4179 Toutatis asteroid as the target,some low-energy transfer trajectories are obtained and analyzed.
文摘In this paper we present an approach for forecasting the imminent regional seismic activity by using geomagnetic data and Earth tide data. The time periods of seismic activity are the time periods around the Sun-Moon extreme of the diurnal average value of the tide vector module. For analyzing the geomagnetic data behaviour we use diurnal standard deviation of geomagnetic vector components F (North, East, Down) for calculating the time variance GeomagSignal. The Sun storm influence is avoided by using data for daily A-indexes (published by NOAA). The precursor signal for forecasting the incoming regional seismic activity is a simple function of the present and previous day GeomagSignal and A-indexes values. The reliability of the geomagnetic “when, regional” precursor is demonstrated by using statistical analysis of day difference between the times of “predicted” and occurred earthquakes. The base of the analysis is a natural hypothesis that the “predicted” earthquake is the one whose surface energy density in the monitoring point is bigger than the energy densities of all occurred earthquakes in the same period and region. The reliability of the approach was tested using the INTERMAGNET stations data located in Bulgaria, Panagurishte, PAG (Jan 1, 2008-Jan 29, 2014), Romania, Surlari, SUA (Jan 1, 2008-Jan 27, 2014), Italy, L’Aquila, AQU (Jan 1, 2008-May 30, 2013) in the time of EU IRSES BlackSeaHazNet (2011-2014) project. The steps of program for solving the “when, where and how” earthquake prediction problem are shortly described.
文摘Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.
文摘The start of the Earth-Moon system has been studied to show that this was an exceptionally violent event. One result was that Earth became the terrestrial planet with the highest average density. Another result was that Earth acquired enough mass and radioactive elements that it is expected to maintain a molten core region and magnetic field for the expected life of the Earth. Earth alone of the terrestrial planets was then able to develop plate tectonics as a long term energy release mechanism. The dipole magnetic field of the Sun reverses periodically, currently at the rate of about every 11 years, so that there was a magnetic braking action acting on the core of Venus that accounts for the slow rotation of that planet. A key result is that the impact event that resulted in the Earth-Moon system led to long term stability on Earth that allowed the eventual development of complex life forms on the Earth.
基金the National Natural Science Foundation of China(U1831132 and 41804025)grant of Hubei Province Natural Science(2018CFA087)+2 种基金supported by the grant from Key Laboratory of Lunar and Deep Space Exploration,CASLIESMARS Special Research Fundingfunded through a DAR grant in planetology from the French Space Agency(CNES)。
文摘Observations of the sky irradiation intensity in the visible wavelengths during a solar eclipse permit to model the Sun diameter,a key number to constrain the internal structure of our star.In this paper,we present an algorithm that takes advantage of the precise Moon topography from Lunar Reconnaissance Orbiter to compute,with a high resolution in time,the geometrical part(i.e.top-of-atmosphere,and for a given wavelength)of the sky irradiation at any given location on the Earth during these events.The algorithm is also able to model the Baily’s beads.We give as an application the theoretical computation of the light curve corresponding to the solar eclipse observed at Lakeland(Queensland,North Australia)on 2012 November 13.The application to real data,with the introduction of atmospheric and instrumental passbands,will be considered in a forthcoming paper.
文摘1.Wang Xiaoer came out ofa bar,drunk.2.He raised his head andlooked up into the sky.3. There was a roundball shining.He won-dered:'What's that inthe sky?'
文摘The aim of this paper is to continue analyzing the interactions in the three-body system made up of the Sun, the Moon, and the Earth. First, we review new details about Moon-Earth connections, with a special focus on mechanical forces. Following, we expand the study to consider the pair Sun-Earth, with calculations for electromagnetic forces. The objective in both cases is to know how mechanical and electromagnetic forces affect seismological events on Earth. Our calculations found that Solar Cycles have no direct interaction with earthquake variations. Instead, we established that there is an internal discrepancy for quakes below 35 km detected in some of the regions analyzed. The results indicate that geomagnetic variations must be studied next to understand their connections to earthquakes.
文摘Having found some orbit variation mechanisms of natural satellites and planets, the author has revealed the formation and evolution law of the Moon. According to this law, the author has further revealed the formation and evolution law of the Solar System and other galaxies in the universe. Especially, the author has also explained why the eight planets around the Sun are prograde planets, why the orbits of the eight planets almost lie in the same plane, and why most planets rotate around their own axes from west to east. Additionally, the author could also explain the expansion of the universe as well as the cause of global climate change.
文摘Every year on 22 April, we have celebrated Earth Day and the beautiful planet we call home. Earth Day, established in 1970, has been used to highlight our planet’s environmental challenges and raise awareness of the importance of protecting our world for future generations [1]. To provide the protection of our planet, we should explain Earth’s environmental challenges to the best of our knowledge in frames of contemporary Geophysics. This paper gives a short overview of the developed Hypersphere World-Universe Model (WUM) and pay particular attention to the principal role of Dark Matter (DM) in the Earth’s life. In this manuscript, we discuss different aspects of the Earth: a condition of Young Earth before the Beginning of life on It;Internal Structure;“The 660-km Boundary” that we named Geomagma;Random Variations of Earth’s Rotational Speed on a daily basis;Origin of Moon;Expanding Earth;Internal Heating;Faint Young Sun paradox;Geocorona and Planetary Coronas;High-Energy Atmospheric Physics. WUM proposed principally different ways to solve the problems of Internal Heating, Origin of the Moon, and Faint Young Sun paradox based on DM core of the Earth. The Model revealed the fact that the Sun Activity causes the Geomagma Activity and, as a consequence, Random Variations of Earth’s Rotational Speed by the varying Sun’s magnetic field.
文摘Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. According to Kepler’s 1st Law, “orbit of a planet with respect to the Sun is an ellipse, with the Sun at one of the two foci.” Orbit of the Moon with respect to Earth is also distinctly elliptical, but this ellipse has a varying eccentricity as the Moon comes closer to and goes farther away from the Earth in a harmonic style along a full cycle of this ellipse. In this paper, our research results are summarized, where it is first mathematically shown that the “distance between points around any two different circles in three-dimensional space” is equivalent to the “distance of points around a vector ellipse to another fixed or moving point, as in two-dimensional space”. What is done is equivalent to showing that bodies moving on two different circular orbits in space vector-wise behave as if moving on an elliptical path with respect to each other, and virtually seeing each other as positioned at an instantaneously stationary point in space on their relative ecliptic plane, whether they are moving with the same angular velocity, or different but fixed angular velocities, or even with different and changing angular velocities with respect to their own centers of revolution. This mathematical revelation has the potential to lead to far reaching discoveries in physics, enabling more insight into forces of nature, with a formulation of a new fundamental model regarding the motions of bodies in the Universe, including the Sun, Planets, and Satellites in the Solar System and elsewhere, as well as at particle and subatomic level. Based on the demonstrated mathematical analysis, as they exhibit almost fixed elliptic orbits relative to one another over time, the assertion is made that the Sun, the Earth, and the Moon must each be revolving in their individual circular orbits of revolution in space. With this expectation, individual orbital parameters of the Sun, the Earth, and the Moon are calculated based on observed Earth to Sun and Earth to Moon distance data, also using analytical methods developed as part of this research to an approximation. This calculation and analysis process have revealed additional results aligned with observation, and this also supports our assertion that the Sun, the Earth, and the Moon must actually be revolving in individual circular orbits.
文摘The aim of this investigation is to find possible changes in ultra-deep earthquakes (UDQ) during different seasons of the year. In the acquisition of data for our previous work we observed an inexplicable pattern of growth of ultra-deep tremors (UDQ) during the studied period. Apparently, there is no viable explanation for growth occurring at such a level, presumably in the asthenosphere. Current research and theories developed for the inner layers of the Earth do not explain such variations. Therefore, a possible explanation would be in external factors such as the seasons of the year, which are determined by changes in the Earth’s axial tilt, and therefore the portion of the earth that is angled toward the sun. This paper focuses exclusively on UDQ events. To simplify the calculations, we consider four main locations;this includes one more region than our previous paper but includes only UDQ data. The results showed that during spring and autumn UDQ events grew slightly in both Northern and Southern Hemispheres. It is also suggested that a contributor to UDQ events is friction from the subducting lithosphere against the continental plates.