We theoretically investigate the orientation of the cold KRb molecules induced in a switched electrostatic field by numerically solving the full time-dependent Schr6dinger equation. The results show that the periodic ...We theoretically investigate the orientation of the cold KRb molecules induced in a switched electrostatic field by numerically solving the full time-dependent Schr6dinger equation. The results show that the periodic field-free molecular orientation can be realized for the KRb molecules by rapidly switching off the electrostatic field. Meanwhile, by varying the switching times of the electrostatic field, the adiabatic and nonadiabatic interactions of the molecules with the applied field can be realized. Moreover, the influences of the electrostatic field strength and the rotational temperature to the degree of the molecular orientation are studied. The investigations show that increasing the electrostatic field will increase the degree of the molecular orientation, both in the constant-field regime and in the field-free regime, while the increasing of the rotational temperature of the cold molecules will greatly decrease the degree of the molecular orientation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11034002)the State Key Development Program for Basic Research of China (Grant No. 2011921602)+1 种基金the Scientific and Technical Project of Nantong City, China (Grant No. BK2011052)the Qing Lan Project
文摘We theoretically investigate the orientation of the cold KRb molecules induced in a switched electrostatic field by numerically solving the full time-dependent Schr6dinger equation. The results show that the periodic field-free molecular orientation can be realized for the KRb molecules by rapidly switching off the electrostatic field. Meanwhile, by varying the switching times of the electrostatic field, the adiabatic and nonadiabatic interactions of the molecules with the applied field can be realized. Moreover, the influences of the electrostatic field strength and the rotational temperature to the degree of the molecular orientation are studied. The investigations show that increasing the electrostatic field will increase the degree of the molecular orientation, both in the constant-field regime and in the field-free regime, while the increasing of the rotational temperature of the cold molecules will greatly decrease the degree of the molecular orientation.