The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies arc stratiform. In the past twenty years, many Chi...The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies arc stratiform. In the past twenty years, many Chinese geologists have conducted researches on the Huogeqi Cu-Pb-Zn deposit, but there has been still a controversy on its origin. Some advocate that the deposit is of sedimentary-metamorphic rcworking origin, some hold that it is of sea-floor SEDEX origin, and others have a preference for magmatic superimposition origin. The crux of the controversy is that there is no common understanding about the source of ore-forming materials. In this paper, the Pb isotopic compositions of regional Achaean-Early Proterozoic basement rocks, various types of sedimentary- metamorphic rocks and volcanic rocks in the mining district, Late Proterozoic and Hercynian magmatic rocks arc introduced and compared with the orc-lead composition, so as to constrain the source of the ore lead. The result indicates that (1) sulfides in the ores have homogeneous Pb isotopic compositions, showing a narrow variation range. Their ^206pb/^204pb ratios arc within a range of 17.027- 17.317; ^207Pb/^204pb ratios, 15.451-15.786 and ^208Pb/^204pb ratios, 36.747-37.669; (2) the Pb isotopic compositions of the regional Achaean-Early Proterozoic basement rocks arc characteristic of the old Pb isotopic composition at the early-stage evolution of the Earth, which varies over a wider range, reflecting significant differences in Pb isotopic compositions of the ores. All this indicates that the source of ore lead has no bearing on the basement rocks; (3) the sedimentary-metamorphic rocks in the mining district arc characterized by highly variable and more radiogenic Pb isotopic compositions and their Pb isotopic ratios arc obviously higher than those of ores, demonstrating that ore lead did not result from metamorphic rcworking of these rocks; (4) Pb isotopic compositions of Late Proterozoic diorite-gabbro and Hercynian granite are higher than those of ores. Meanwhile, the Pb isotopic compositions of sulfides in the small-sized strata-penetrating mineralized veinlets formed at later stages arc completely consistent with that of sulfides in stratiform-banded ores, suggesting that these veiniets arc the product of autochthonous rcworking of the stratiform-banded ores during the period of metamorphism and the late magmatic superimposition-mineralization can be excluded; (5) amphibolite, whose protolith is basic volcanic rocks, has the same Pb isotopic compositions as ores, implying that ore lead was derived probably from basic volcanism. So, the source of ore-forming materials for the Huogeqi deposit is like that of the volcanic massive sulfide (VMS) deposits. However, the orebodies do not occur directly within the volcanic rocks, and instead they overlie the volcanic rocks, showing some differences from those typical VMS-type deposits.展开更多
Considering porphyry and wall rocks as a whole system, the behaviour of rare earth elements (REE) in hydrothermal alteration and mineralization of the exceedingly large Wunugetushan porphyry Cu-Mo deposit of Inner Mon...Considering porphyry and wall rocks as a whole system, the behaviour of rare earth elements (REE) in hydrothermal alteration and mineralization of the exceedingly large Wunugetushan porphyry Cu-Mo deposit of Inner Mongolia has been studied. It has been found for the first time that there exists complementary REE variation in hydrothermal alteration between porphyry and wall rocks, and Eu depletion has certain significance in indicating mineralization. Based on an analysis of the variation in REE contents of relevant minerals during the hydrothermal alteration, the ore-forming fluids are inferred to be depleted in ∑REE, comparatively enriched in ∑Y and strongly depleted in Eu. In the intermediate-strong alteration zones, porphyry and wall rock took part in hydrothermal metasomatism and alteration almost in equal ratio mass. Furthermore, studies of REE and hydrogen and oxygen isotopes and fluid inclusions confirm the existence of hydrothermal convection and the possibility of supplying part of ore materials by the wall rock and indicate that the application of REE geochemistry in mineral prospecting is promising.展开更多
基金supported jointly by the Bureau of Resources and Environment,Chinese Academy of Sciences(KZCX3-SW-125)the National Natural Science Foundation of China(Grant No,40172037).
文摘The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies arc stratiform. In the past twenty years, many Chinese geologists have conducted researches on the Huogeqi Cu-Pb-Zn deposit, but there has been still a controversy on its origin. Some advocate that the deposit is of sedimentary-metamorphic rcworking origin, some hold that it is of sea-floor SEDEX origin, and others have a preference for magmatic superimposition origin. The crux of the controversy is that there is no common understanding about the source of ore-forming materials. In this paper, the Pb isotopic compositions of regional Achaean-Early Proterozoic basement rocks, various types of sedimentary- metamorphic rocks and volcanic rocks in the mining district, Late Proterozoic and Hercynian magmatic rocks arc introduced and compared with the orc-lead composition, so as to constrain the source of the ore lead. The result indicates that (1) sulfides in the ores have homogeneous Pb isotopic compositions, showing a narrow variation range. Their ^206pb/^204pb ratios arc within a range of 17.027- 17.317; ^207Pb/^204pb ratios, 15.451-15.786 and ^208Pb/^204pb ratios, 36.747-37.669; (2) the Pb isotopic compositions of the regional Achaean-Early Proterozoic basement rocks arc characteristic of the old Pb isotopic composition at the early-stage evolution of the Earth, which varies over a wider range, reflecting significant differences in Pb isotopic compositions of the ores. All this indicates that the source of ore lead has no bearing on the basement rocks; (3) the sedimentary-metamorphic rocks in the mining district arc characterized by highly variable and more radiogenic Pb isotopic compositions and their Pb isotopic ratios arc obviously higher than those of ores, demonstrating that ore lead did not result from metamorphic rcworking of these rocks; (4) Pb isotopic compositions of Late Proterozoic diorite-gabbro and Hercynian granite are higher than those of ores. Meanwhile, the Pb isotopic compositions of sulfides in the small-sized strata-penetrating mineralized veinlets formed at later stages arc completely consistent with that of sulfides in stratiform-banded ores, suggesting that these veiniets arc the product of autochthonous rcworking of the stratiform-banded ores during the period of metamorphism and the late magmatic superimposition-mineralization can be excluded; (5) amphibolite, whose protolith is basic volcanic rocks, has the same Pb isotopic compositions as ores, implying that ore lead was derived probably from basic volcanism. So, the source of ore-forming materials for the Huogeqi deposit is like that of the volcanic massive sulfide (VMS) deposits. However, the orebodies do not occur directly within the volcanic rocks, and instead they overlie the volcanic rocks, showing some differences from those typical VMS-type deposits.
基金This paper presents part of the results of Subject 55-03-11-4 of a "Seventh Five-Year Plan" key scientific and technological project of ChinaIt was ranked as an excellent paper at the 2nd National Symposium for Young Geologists held in Beijing Universi
文摘Considering porphyry and wall rocks as a whole system, the behaviour of rare earth elements (REE) in hydrothermal alteration and mineralization of the exceedingly large Wunugetushan porphyry Cu-Mo deposit of Inner Mongolia has been studied. It has been found for the first time that there exists complementary REE variation in hydrothermal alteration between porphyry and wall rocks, and Eu depletion has certain significance in indicating mineralization. Based on an analysis of the variation in REE contents of relevant minerals during the hydrothermal alteration, the ore-forming fluids are inferred to be depleted in ∑REE, comparatively enriched in ∑Y and strongly depleted in Eu. In the intermediate-strong alteration zones, porphyry and wall rock took part in hydrothermal metasomatism and alteration almost in equal ratio mass. Furthermore, studies of REE and hydrogen and oxygen isotopes and fluid inclusions confirm the existence of hydrothermal convection and the possibility of supplying part of ore materials by the wall rock and indicate that the application of REE geochemistry in mineral prospecting is promising.