The major objective of this work was to establish a structural state-space model to estimate the dynamic origin-destination(O-D) matrices for urban rail transit network, using in- and out-flows at each station from au...The major objective of this work was to establish a structural state-space model to estimate the dynamic origin-destination(O-D) matrices for urban rail transit network, using in- and out-flows at each station from automatic fare collection(AFC) system as the real time observed passenger flow counts. For lacking of measurable passenger flow information, the proposed model employs priori O-D matrices and travel time distribution from historical travel records in AFC system to establish the dynamic system equations. An arriving rate based on travel time distribution is defined to identify the dynamic interrelations between time-varying O-D flows and observed flows, which greatly decreases the computational complexity and improve the model's applicability for large-scale network. This methodology is tested in a real transit network from Beijing subway network in China through comparing the predicted matrices with the true matrices. Case study results indicate that the proposed model is effective and applicative for estimating dynamic O-D matrices for large-scale rail transit network.展开更多
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o...The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.展开更多
Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performa...Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performance of DOA estimators may be deteriorated greatly if the non-uniformity of noise is ignored.To tackle this problem,we consider the problem of DOA es-timation in the presence of nonuniform noise by leveraging a singular value thresholding(SVT)based matrix completion method.Different from that the traditional SVT method apply fixed threshold,to improve the performance,the proposed method can obtain a more suitable threshold based on careful estimation of the signal-to-noise ratio(SNR)levels.Specifically,we firstly employ an SVT-based matrix completion method to estimate the noise-free covariance matrix.On this basis,the signal and noise subspaces are obtained from the eigendecomposition of the noise-free cov-ariance matrix.Finally,traditional subspace-based DOA estimation approaches can be directly ap-plied to determine the DOAs.Numerical simulations are performed to demonstrate the effective-ness of the proposed method.展开更多
The method of condition number is commonly used to diagnose a normal matrix N whether it is ill conditioned state or not. For its shortcoming, a method to measure multi collinearity of a matrix was put forward. The me...The method of condition number is commonly used to diagnose a normal matrix N whether it is ill conditioned state or not. For its shortcoming, a method to measure multi collinearity of a matrix was put forward. The method is that implement Gram Schmidt orthogonalizing process to column vectors of a design matrix A (α l ), then calculate the norms of every vector before and after orthogonalization process and their corresponding ratio, and use the minimum ratio among the group of ratios to measure the multi collinearity of A. According to the corresponding relationship between the multi collinearity and the ill conditioned state of a matrix, the method also studies and offers reference indexes weighing the ill conditioned state of a matrix based on the relative norm. The remarkable characteristics of the method are that the measure of multi collinearity has idiographic geometry meaning and clear lower and upper limit, the size of the measure reflects the multi collinearity of column vectors objectively. It is convenient to study the reason that results in the matrix being multi collinearity and to put forward solving plan according to the method which is summarized as the method of minimum norm and abbreviated as F method.展开更多
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio select...Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio selection,and investment strategies,accurate estimates of the relationship among assets are as necessary as are delicate in a time-dependent context.In this regard,fundamental tools that increasingly attract research interests are precision matrix and graphical models,which are able to obtain insights into the joint evolution of financial quantities.In this paper,we present a robust divergence estimator for a time-varying precision matrix that can manage both the extreme events and time-dependency that affect financial time series.Furthermore,we provide an algorithm to handle parameter estimations that uses the“maximization–minimization”approach.We apply the methodology to synthetic data to test its performances.Then,we consider the cryptocurrency market as a real data application,given its remarkable suitability for the proposed method because of its volatile and unregulated nature.展开更多
Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed b...Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing sparsity,and the linear aggregation degree evaluation of observed signals is presented which obeys generalized Gaussian distribution(GGD).Both the GGD shape parameter and the signals' correlation features affect the observation signals sparsity and further affected the directionality of time-frequency scatter plot.So a new mixing matrix estimation method is proposed for different sparsity degrees,which especially focuses on unclear directionality of scatter plot and weak linear aggregation degree.Firstly,the direction of coefficient scatter plot by time-frequency transform is improved and then the single source coefficients in the case of weak linear clustering is processed finally the improved K-means clustering is applied to achieve the estimation of mixing matrix.The proposed algorithm reduces the requirements of signals sparsity and independence,and the mixing matrix can be estimated with high accuracy.The simulation results show the feasibility and effectiveness of the algorithm.展开更多
In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares...In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.展开更多
To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition...To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.展开更多
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ...Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.展开更多
This paper investigates the problem of robust H-infinity state estimation for a class of uncertain discretetime piecewise affine systems where state space instead of measurable output space partitions are assumed so t...This paper investigates the problem of robust H-infinity state estimation for a class of uncertain discretetime piecewise affine systems where state space instead of measurable output space partitions are assumed so that the filter implementation may not be synchronized with plant state trajectory transitions. Based on a piecewise quadratic Lyapunov function combined with S-procedure and some matrix inequality convexifying techniques, two different approaches are developed to the robust filtering design for the underlying piecewise affine systems. It is shown that the filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches.展开更多
In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an im...In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an improved delay-dependent criterion is established to estimate the neuron states such that the dynamics of the estimation error is globally exponentially stable, and the derivative of time-delay being less than 1 is removed, which generalize the existent methods. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed results.展开更多
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
In this paper, we consider the problem of delay-dependent stability for state estimation of neural networks with two additive time–varying delay components via sampleddata control. By constructing a suitable Lyapunov...In this paper, we consider the problem of delay-dependent stability for state estimation of neural networks with two additive time–varying delay components via sampleddata control. By constructing a suitable Lyapunov–Krasovskii functional with triple and four integral terms and by using Jensen's inequality, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities(LMIs) to ensure the asymptotic stability of the equilibrium point of the considered neural networks. Instead of the continuous measurement,the sampled measurement is used to estimate the neuron states, and a sampled-data estimator is constructed. Due to the delay-dependent method, a significant source of conservativeness that could be further reduced lies in the calculation of the time-derivative of the Lyapunov functional. The relationship between the time-varying delay and its upper bound is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some less conservative stability criteria are established for systems with two successive delay components. Finally, numerical example is given to show the superiority of proposed method.展开更多
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic ...In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.展开更多
This paper proposes a fault estimation method for sampled data systems with sensor faults. The sampled data system is firstly discretized to obtain a discrete time model. Then a descriptor system is constructed to des...This paper proposes a fault estimation method for sampled data systems with sensor faults. The sampled data system is firstly discretized to obtain a discrete time model. Then a descriptor system is constructed to describe the discretized system with sensor faults. Based on the descriptor system representation a bank of observers are designed to isolate and estimate the sensor faults. These observers can be synthesized by the linear matrix inequality (LMI) technique and sufficient conditions for the existence of these observers are derived. Finally the effectiveness is ascertained by an aircraft simulation example which is in the proposed method.展开更多
A method is presented in this work that integrates both emerging and mature data sources to estimate the operational travel demand in fine spatial and temporal resolutions.By analyzing individuals’mobility patterns r...A method is presented in this work that integrates both emerging and mature data sources to estimate the operational travel demand in fine spatial and temporal resolutions.By analyzing individuals’mobility patterns revealed from their mobile phones,researchers and practitioners are now equipped to derive the largest trip samples for a region.Because of its ubiquitous use,extensive coverage of telecommunication services and high penetration rates,travel demand can be studied continuously in fine spatial and temporal resolutions.The derived sample or seed trip matrices are coupled with surveyed commute flow data and prevalent travel demand modeling techniques to provide estimates of the total regional travel demand in the form of origindestination(OD)matrices.The methodology is evaluated in a series of real world transportation planning studies and proved its potentials in application areas such as dynamic traffic assignment modeling,integrated corridor management and online traffic simulations.展开更多
基金Project(51478036)supported by the National Natural Science Foundation of ChinaProject(20120009110016)supported by Research Fund for Doctoral Program of Higher EducationChina
文摘The major objective of this work was to establish a structural state-space model to estimate the dynamic origin-destination(O-D) matrices for urban rail transit network, using in- and out-flows at each station from automatic fare collection(AFC) system as the real time observed passenger flow counts. For lacking of measurable passenger flow information, the proposed model employs priori O-D matrices and travel time distribution from historical travel records in AFC system to establish the dynamic system equations. An arriving rate based on travel time distribution is defined to identify the dynamic interrelations between time-varying O-D flows and observed flows, which greatly decreases the computational complexity and improve the model's applicability for large-scale network. This methodology is tested in a real transit network from Beijing subway network in China through comparing the predicted matrices with the true matrices. Case study results indicate that the proposed model is effective and applicative for estimating dynamic O-D matrices for large-scale rail transit network.
文摘The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.
基金the National Natural Science Foundation of China(No.61771316).
文摘Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performance of DOA estimators may be deteriorated greatly if the non-uniformity of noise is ignored.To tackle this problem,we consider the problem of DOA es-timation in the presence of nonuniform noise by leveraging a singular value thresholding(SVT)based matrix completion method.Different from that the traditional SVT method apply fixed threshold,to improve the performance,the proposed method can obtain a more suitable threshold based on careful estimation of the signal-to-noise ratio(SNR)levels.Specifically,we firstly employ an SVT-based matrix completion method to estimate the noise-free covariance matrix.On this basis,the signal and noise subspaces are obtained from the eigendecomposition of the noise-free cov-ariance matrix.Finally,traditional subspace-based DOA estimation approaches can be directly ap-plied to determine the DOAs.Numerical simulations are performed to demonstrate the effective-ness of the proposed method.
文摘The method of condition number is commonly used to diagnose a normal matrix N whether it is ill conditioned state or not. For its shortcoming, a method to measure multi collinearity of a matrix was put forward. The method is that implement Gram Schmidt orthogonalizing process to column vectors of a design matrix A (α l ), then calculate the norms of every vector before and after orthogonalization process and their corresponding ratio, and use the minimum ratio among the group of ratios to measure the multi collinearity of A. According to the corresponding relationship between the multi collinearity and the ill conditioned state of a matrix, the method also studies and offers reference indexes weighing the ill conditioned state of a matrix based on the relative norm. The remarkable characteristics of the method are that the measure of multi collinearity has idiographic geometry meaning and clear lower and upper limit, the size of the measure reflects the multi collinearity of column vectors objectively. It is convenient to study the reason that results in the matrix being multi collinearity and to put forward solving plan according to the method which is summarized as the method of minimum norm and abbreviated as F method.
基金Supported by the NSF of Henan Province(0611052600)
文摘Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
文摘Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio selection,and investment strategies,accurate estimates of the relationship among assets are as necessary as are delicate in a time-dependent context.In this regard,fundamental tools that increasingly attract research interests are precision matrix and graphical models,which are able to obtain insights into the joint evolution of financial quantities.In this paper,we present a robust divergence estimator for a time-varying precision matrix that can manage both the extreme events and time-dependency that affect financial time series.Furthermore,we provide an algorithm to handle parameter estimations that uses the“maximization–minimization”approach.We apply the methodology to synthetic data to test its performances.Then,we consider the cryptocurrency market as a real data application,given its remarkable suitability for the proposed method because of its volatile and unregulated nature.
基金Supported by the National Natural Science Foundation of China(No.51204145)Natural Science Foundation of Hebei Province of China(No.2013203300)
文摘Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing sparsity,and the linear aggregation degree evaluation of observed signals is presented which obeys generalized Gaussian distribution(GGD).Both the GGD shape parameter and the signals' correlation features affect the observation signals sparsity and further affected the directionality of time-frequency scatter plot.So a new mixing matrix estimation method is proposed for different sparsity degrees,which especially focuses on unclear directionality of scatter plot and weak linear aggregation degree.Firstly,the direction of coefficient scatter plot by time-frequency transform is improved and then the single source coefficients in the case of weak linear clustering is processed finally the improved K-means clustering is applied to achieve the estimation of mixing matrix.The proposed algorithm reduces the requirements of signals sparsity and independence,and the mixing matrix can be estimated with high accuracy.The simulation results show the feasibility and effectiveness of the algorithm.
基金the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX3-SYW-S02)the Youth Foundation of USTC
文摘In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.
基金the National Natural Science Foundation of China (60601016)
文摘To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.
基金supported by the Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China(2019JJ10004)。
文摘Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region of China under the Project CityU/113708partly by the National Natural Science Foundation of China (No.60825303, 60834003)+2 种基金partly by the 973 Project (No.2009CB320600)partly by the Postdoctoral Science Foundation of China (No.20100471059)partly by the Overseas Talents Foundation of the Harbin Institute of Technology
文摘This paper investigates the problem of robust H-infinity state estimation for a class of uncertain discretetime piecewise affine systems where state space instead of measurable output space partitions are assumed so that the filter implementation may not be synchronized with plant state trajectory transitions. Based on a piecewise quadratic Lyapunov function combined with S-procedure and some matrix inequality convexifying techniques, two different approaches are developed to the robust filtering design for the underlying piecewise affine systems. It is shown that the filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches.
基金supported by the National Natural Science Foundation of China (No.60764001, 60835001, 60875035)
文摘In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an improved delay-dependent criterion is established to estimate the neuron states such that the dynamics of the estimation error is globally exponentially stable, and the derivative of time-delay being less than 1 is removed, which generalize the existent methods. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed results.
基金Supported by National Natural Science Foundation of China (60774071), the Doctoral Program Foundation of Education Ministry of China (20050422036), and Shandong Scientific and Research Grant.(2005BS01007.)
文摘这份报纸处理 H 差错评价的问题因为有 L2 标准的线性分离变化时间的系统的一个类围住未知输入。主要贡献是 H 差错评价的一条新 Krein 基于空间的途径的发展。H 差错评价的问题第一被等同到一种分级的二次的形式的最小。由在 Krein 空格介绍一个相应系统,然后,一个 H 差错评估者的存在上的一个足够、必要的条件被导出,它的参数矩阵的一个答案以矩阵 Riccati 方程被获得。最后,二个数字例子被给表明建议方法的效率。
基金Supported by National Natural Science Foundation of China (60574083, 60811120024), Graduate Innovation Research Foundation of Jiangsu Province (CX08B-090Z), and Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics (BCXJ08-03)
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.
文摘In this paper, we consider the problem of delay-dependent stability for state estimation of neural networks with two additive time–varying delay components via sampleddata control. By constructing a suitable Lyapunov–Krasovskii functional with triple and four integral terms and by using Jensen's inequality, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities(LMIs) to ensure the asymptotic stability of the equilibrium point of the considered neural networks. Instead of the continuous measurement,the sampled measurement is used to estimate the neuron states, and a sampled-data estimator is constructed. Due to the delay-dependent method, a significant source of conservativeness that could be further reduced lies in the calculation of the time-derivative of the Lyapunov functional. The relationship between the time-varying delay and its upper bound is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some less conservative stability criteria are established for systems with two successive delay components. Finally, numerical example is given to show the superiority of proposed method.
基金supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (0506011200702)National Natural Science Foundation of China+2 种基金Tian Yuan Special Foundation (10926059)Foundation of Zhejiang Educational Committee (Y200803920)Scientific Research Foundation of Hangzhou Dianzi University(KYS025608094)
文摘In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper proposes a fault estimation method for sampled data systems with sensor faults. The sampled data system is firstly discretized to obtain a discrete time model. Then a descriptor system is constructed to describe the discretized system with sensor faults. Based on the descriptor system representation a bank of observers are designed to isolate and estimate the sensor faults. These observers can be synthesized by the linear matrix inequality (LMI) technique and sufficient conditions for the existence of these observers are derived. Finally the effectiveness is ascertained by an aircraft simulation example which is in the proposed method.
文摘A method is presented in this work that integrates both emerging and mature data sources to estimate the operational travel demand in fine spatial and temporal resolutions.By analyzing individuals’mobility patterns revealed from their mobile phones,researchers and practitioners are now equipped to derive the largest trip samples for a region.Because of its ubiquitous use,extensive coverage of telecommunication services and high penetration rates,travel demand can be studied continuously in fine spatial and temporal resolutions.The derived sample or seed trip matrices are coupled with surveyed commute flow data and prevalent travel demand modeling techniques to provide estimates of the total regional travel demand in the form of origindestination(OD)matrices.The methodology is evaluated in a series of real world transportation planning studies and proved its potentials in application areas such as dynamic traffic assignment modeling,integrated corridor management and online traffic simulations.