The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we inv...The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.展开更多
High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of gr...High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of granites,granitic porphyries,and granodiorites.Zircon U-Pb age data indicate that the Weixi granitoids formed at 248-240 Ma and were coeval with silicic volcanic rocks of the Weixi arc.The Weixi granitoids are enriched in Rb,Th,and U,depleted in Ba,Sr,Nb,Ta,and Ti,and have high light/heavy rare earth element ratios and slightly negative Eu anomalies.The Weixi granitoids have negative ε_(Nd)(t)values(-9.8 to-7.8)and negative zircon ε_(Hf)(t)values(-12.02 to-5.11).The geochemical and isotopic features suggest the Weixi granitoids were derived by partial melting of ancient crustal material.The Weixi granitoids and silicic volcanic rocks were derived from the same magma by crystal accumulation and melt extraction,respectively,and they record the formation of a continental arc in the central Sanjiang orogenic belt.展开更多
The combined petrographic,petrological,geochemical and geochronological study of the Neoproterozoic gneisses of the Sarychabyn and Baskan complexes of the Junggar Alataw of South Kazakhstan elucidate the Precambrian t...The combined petrographic,petrological,geochemical and geochronological study of the Neoproterozoic gneisses of the Sarychabyn and Baskan complexes of the Junggar Alataw of South Kazakhstan elucidate the Precambrian tectonic evolution of the Aktau–Yili terrane.It is one of the largest Precambrian crustal blocks in the western Central Asian orogenic belt.The U-Pb single-grain zircon ages indicate that granite-gneisses formed from the same source and crystallised in the early Neoproterozoic ca.930–920 Ma.The chemical composition of gneisses corresponds to A2-type granites.The whole-rock Nd isotopic characteristics(εNd(t)=−4.9 to−1.0 and TNd(DM-2st)=1.9 to 1.7 Ga)indicate the involvement of Paleoproterozoic crustal rocks in magma generation.Early Neoproterozoic ca.930–920 Ma A-type granitoids in the Aktau–Yili terrane of South and Central Kazakhstan might reflect within-plate magmatism adjacent to the collisional belt or a local extension setting in back-arc areas of the continental arc.展开更多
The Ailaoshan Orogen in the southeastern Tibet Plateau,situated between the Yangtze and Simao blocks,underwent a complex structural,magmatic,and metamorphic evolution resulting in different tectonic subzones with vary...The Ailaoshan Orogen in the southeastern Tibet Plateau,situated between the Yangtze and Simao blocks,underwent a complex structural,magmatic,and metamorphic evolution resulting in different tectonic subzones with varying structural lineaments and elemental concentrations.These elements can conceal or reduce anomalies due to the mutual effect between different anomaly areas.Dividing the whole zone into subzones based on tectonic settings,ore cluster areas,or sample catchment basins(Scb),geochemical and structural anomalies associated with gold(Au)mineralization have been identified utilizing mean plus twice standard deviations(Mean+2STD),factor analysis(FA),concentration-area(CA)modeling of stream sediment geochemical data,and lineament density in both the Ailaoshan Orogen and the individual subzones.The FA in the divided 98 Scbs with 6 Scbs containing Au deposits can roughly ascertain unknown rock types,identify specific element associations of known rocks and discern the porphyry or skarn-type Au mineralization.Compared with methods of Mean+2STD and C-A model of data in the whole orogen,which mistake the anomalies as background or act the background as anomalies,the combined methods of FA and C-A in the separate subzones or Scbs works well in regional metallogenic potential analysis.Mapping of lineament densities with a 10-km circle diameter is not suitable to locate Au deposits because of the delineated large areas of medium-high lineament density.In contrast,the use of circle diameters of 1.3 km or 1.7 km in the ore cluster scale delineates areas with a higher concentration of lineament density,consistent with the locations of known Au deposits.By analyzing the map of faults and Au anomalies,two potential prospecting targets,Scbs 1 and 63 with a sandstone as a potential host rock for Au,have been identified in the Ailaoshan Orogen.The use of combined methods in the divided subzones proved to be more effective in improving geological understanding and identifying mineralization anomalies associated with Au,rather than analyzing the entire large area.展开更多
The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ...The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ages,Hf isotopic and geochemical data on the Xingxingxia biotite granite,amazonite granite and granitic pegmatite in Central Tianshan,NW China.Zircon U-Pb dating yielded formation ages of 242 Ma for the biotite granite and 240 Ma for the amazonite granite.These granitoid rocks have high K_(2)O with low MgO and CaO contents.They are enriched in Nb,Ta,Hf and Y,while being depleted in Ba and Sr,showing flat HREE patterns and negative Eu anomalies.They have typical A-type granite geochemical signatures with high Ga/A_(1)(8–13)and TFeO/(TFeO+MgO)ratios,showing an A_(2) affinity for biotite granite and an A_(1) affinity for amazonite granite and granitic pegmatite.Zircon ε_(Hf)(t)values of the granitoids are 0.45–2.66,with Hf model ages of 0.99–1.17 Ga.This suggests that these A-type granites originated from partial melting of the lower crust.We propose that Xingxingxia Triassic A-type granites formed under lithospheric extension from post-orogenic to anorogenic intraplate settings and NE-trending regional strike-slip fault-controlled magma emplacement in the upper crust.展开更多
The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth i...The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth in Central Asia.This orogen developed through the episodic amalgamation and accretion of continental margin arcs,island arcs,ophiolites,and accretionary wedges,undergoing a complex process of accretion and evolution.Since the Phanerozoic,the Beishan orogen has experienced multiple phases of magmatic and collision events.The intricate distribution of magmatic arc rocks has obscured the complete basement traces,and the spatial superposition of multiple magmatic arc phases has complicated the study of its evolutionary history.展开更多
The Paleoproterozoic was a critical time in whether modern-style plate tectonics had become globally dominant(e.g.,Wan et al.,2020).The Capricorn Orogen witnessed the assembly of the Pilbara and Yilgarn Cratons and an...The Paleoproterozoic was a critical time in whether modern-style plate tectonics had become globally dominant(e.g.,Wan et al.,2020).The Capricorn Orogen witnessed the assembly of the Pilbara and Yilgarn Cratons and an exotic microcontinent,the Glenburgh Terrane,to form the West Australia Craton(WAC)through two collisional orogenic events,the 2215–2145 Ma Ophthalmian and 2005–1950 Ma Glenburgh Orogenies(Johnson et al.,2013;Fig.1).Compared to other Proterozoic orogenic belts in Australia,the Capricorn Orogen preserves‘complete'opposing continental margin successions,together with intervening arc fragments associated with oceanic closure and foreland basins associated with collisional loading(Cawood et al.,2009).展开更多
During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Never...During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Nevertheless,the closure time of the PAO is still under debate.Thus,to identify the origin of the PAO,the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine,polymict clastic boulders and sandstones in the Shoushangou Formation within the basin.The analyses revealed magmatic activity and tectonic evolution.The conglomerates include megaclasts of granite(298.8±9.1 Ma)and granodiorite porphyry(297.1±3.1 Ma),which were deposited by muddy debris flow.Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite,characterized by low Zr+Nb+Ce+Y and low Ga/Al values.The granitoid boulders were formed in island arc setting,indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin.Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks.Detrital zircon U-Pb age cluster of 330–280 Ma was obtained,indicating input from granite,ophiolite,Xilin Gol complex,and Carboniferous sources to the south.The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc.The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO.The backarc basin and intrusive rocks,in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol,confirm the presence of an Early Permian trencharc-basin system in the region,represented by the Baolidao arc and Xi Ujimqin backarc basin.This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.展开更多
The Bayingobi basin is located in the middle of Central Asia Orogenic Belt,at the intersection of Paleo-Asian Ocean and Tethys Ocean,as well as the junction of multiple tectonic plates.This unique tectonic setting und...The Bayingobi basin is located in the middle of Central Asia Orogenic Belt,at the intersection of Paleo-Asian Ocean and Tethys Ocean,as well as the junction of multiple tectonic plates.This unique tectonic setting underpins the basin's intricate history of tectonic activity.To unravel the multifaceted tectono-thermal evolution within the southwestern region of the basin and to elucidate the implications of sandstone-hosted uranium mineralization,granitic and clastic rock samples were collected from the Zongnai Mts.uplift and Yingejing depression,and apatite fission track(AFT)dating and thermal history simulation analysis were performed.AFT dating findings reveal that the apparent ages of all samples fall within the range of 244 Ma to 112 Ma.In particular,the bedrock of the Zongnai Mts.and Jurassic detrital apatite fission tracks have undergone complete annealing,capturing the uplift-cooling age.Meanwhile,the AFT ages of Cretaceous detrital rocks are either equivalent to or notably exceed the age of sedimentary strata,signifying the cooling age of the provenance.A comprehensive examination of AFT ages and palaeocurrent direction analyses suggests that the Cretaceous source in the Tamusu area predominantly originated from the central and southern sectors of the Zongnai Mts.uplift.However,at a certain juncture during the Late Early Cretaceous,the Cretaceous provenance expanded to include the northern part of the Zongnai Mts.uplift.Based on the results of thermal history simulations and previous studies,it is considered that the Tamusu area has undergone four distinct tectonic uplift events since the Late Paleozoic.The first is the Late Permian to Early Triassic(260-240 Ma),which is associated with the closure of the Paleo-Asian Ocean and the accretionary orogeny within the Alxa region.The second uplift event took place in the Early Jurassic(190-175 Ma)and corresponded to intraplate orogeny following the closure of the Paleo-Asian Ocean.The third uplift event is the Late Jurassic to Early Cretaceous(160-120 Ma),which is linked to the East Asia's position as the convergence center of multiple tectonic plates during this period.The fourth uplift event is linked to the Late Early Cretaceous(112-100 Ma),driven either by the westward subduction of the eastern Pacific plate or the mantle upwelling resulting from the Bangong-Nujiang oceanic lithosphere subduction and slab break-off.The primary stress orientation for the first three tectonic uplift phases approximated a nearly SN direction,while the fourth stage featured a principal stress direction of NW.The fourth tectonic uplift event of the Late Early Cretaceous and basaltic eruption thermal event during this period likely exerted a significant influence on the formation of the Tamusu sandstone-hosted uranium deposit.展开更多
Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and sy...Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and systematic whole-rock geochemical data for the Haoquangou and Liujiaxia granitoids within the North Qilian orogenic belt and the Qilian Block, respectively, to constrain their petrogenesis, and the Silurian tectonic evolution of the Qilian orogenic belt. Zircon U–Pb ages indicate that the Haoquangou and Liujiaxia intrusions were emplaced at423 ± 3 Ma and 432 ± 4 Ma, respectively. The Haoquangou granodiorites are calc-alkaline, while the Liujiaxia granites belong to the high-K calc-alkaline series.Both are peraluminous in composition and have relatively depleted Nd isotopic [ε_(Nd)(t) =(-3.9 – + 0.6)] characteristics compared with regional basement rocks, implying their derivation from a juvenile lower crust. They show adakitic geochemical characteristics and were generated by partial melting of thickened lower continental crust. Postcollisional extensional regime related to lithospheric delamination was the most likely geodynamic mechanism for the generation of the Haoquangou granodiorite, while the Liujiaxia granites were generated in a compressive setting during continental collision between the Qaidam and Qilian blocks.展开更多
Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identifi...Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.展开更多
The Mibei gold deposit,located in the southwestern part of the Xuefengshan uplift zone,the middle section of the Jiangnan orogenic belt in southern China,has estimated gold resources of approximately seven tons.This d...The Mibei gold deposit,located in the southwestern part of the Xuefengshan uplift zone,the middle section of the Jiangnan orogenic belt in southern China,has estimated gold resources of approximately seven tons.This deposit is primarily a quartz vein-type gold deposit,with ore bodies occurring mainly within Neoproterozoic metasediments.The main metallic minerals in the ore are pyrite,chalcopyrite,and arsenopyrite.In this study,the petrography and microthermometry of ore-forming fluid inclusions,oxygen isotopes of gold-bearing quartz,and sulfur isotopes of goldbearing sulfides and arsenopyrite were analyzed.Three types of fluid inclusions were identified:type Ⅰa three-phase inclusions comprising vapor and two phases of liquids(V_(CO_(2))+L_(CO_(2))+L_(H2O)),type Ⅰb two-phase liquids(L_(CO_(2))+L_(H2O)),typeⅡ two-phase vapor-rich inclusions(V/V+L> 50%),and type Ⅲ pure liquid inclusions.Type Ⅰ inclusions were heated uniformly to the liquid phase,type Ⅱ inclusions were heated uniformly to the gas phase,and type Ⅲ inclusions were heated without change.In general,the temperature range of homogenization to liquid phase of fluid inclusions in the Mibei gold deposit is 204-227℃.The salinity of the inclusion ranges from 4.6 to 12.2 wt% NaCl equiv.The δ~(18)O_(SMOW) of gold-bearing quartz varies from 16.9‰ to 17.5‰.The δ~(18)O_(H2O) of gold-bearing quartz are varied from 6.5‰ to 7.5‰.The δ~(34)S values of gold-bearing pyrite range from 1.7‰ to 6.8‰.The δ~(34)S values of gold-bearing arsenopy rite range from 5.6%o to 5.9‰.Theδ~(34)S values of pyrite from wall rocks slate range from 6.4‰ to 11.6‰.This evidence implies that the ore-forming fluids of the Mibei gold deposit originated from magmatic-hydrothermal processes,mixing with minor S from the surrounding metasediments.Combined with the evolution of the Jiangnan orogenic belt,due to the magmatic and tectonic activities of the Xuefengshan uplift during the Caledonian period,the fault seal mechanism controlled the ore-forming process.Overall,the Mibei gold deposit is more akin to a magmatic-hydrothermal gold deposit.展开更多
It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Maf...It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Mafic dike swarms carry important information on the deep earth(including mantle)geodynamics and geochemical evolution.In the Jiangnan Orogen(South China).there is no information on whether the Mesozoic magmatic activities in this region are also directly related to the Pacific subduction or not.In this study,we present detailed zircon U-Pb geochronological,wholerock element and Sr-Nd isotope data for Early Cretaceous Tuanshanbei dolerite dikes,and provide new constraints on the condition of the lithospheric mantle and mantle dynamics of the SCB during that time.LA-ICP-MS zircon U-Pb dating suggests that this dolerite erupted in the Early Cretaceous(~145 Ma).All samples have alkaline geochemical affinities with K_(2)O+Na_(2)O=3.11-4.04 wt%,K_(2)O/Na_(2)O=0.50-0.72,and Mg^(#)=62.24-65.13.They are enriched in LILE but depleted in HFSE with higher initial^(87)Sr/^(86)Sr ratio(0.706896-0.714743)and lower ε_(Nd)(t)(-2.61 to-1.67).They have high Nb/U,Nb/La,La/Sm and Rb/Sr,and low La/Nb,La/Ta,Ce/Pb,Ba/Rb,Tb/Yb and Gd/Yb ratios.Such geochemical signatures suggest that the fractional crystallization is obvious but crustal contamination play a negligible role during magmatic evolution.Tuanshanbei dolerite were most likely derived from low-degree(2%-5%)partial melting of a phlogopite-bearing mantle material consisted of~85% spinel peridotite and~15% garnet peridotite previously metasomatized by asthenospherederived fluids/melts with minor subduction-derived fluids/melts.Slab-rollback generally lead to the upwelling of the hot asthenosphere.The upwelling of asthenosphere consuming the lithospheric mantle by thermo-mechanical-chemical erosion.The lithospheric mantle may have partially melted due to the heating by the upwelling asthenosphere and lithospheric extension.It is inferred that the Tuanshanbei dolerite might be associated with the initial slab rollback and corresponding lithospheric extension occurred potentially at ca.145 Ma.展开更多
The Qilian Orogenic belt is one of the typical orogenic belts globally and a natural laboratory for studying plate tectonics.Many researchers have studied the ophiolite and high pressure and ultra-high pressure metamo...The Qilian Orogenic belt is one of the typical orogenic belts globally and a natural laboratory for studying plate tectonics.Many researchers have studied the ophiolite and high pressure and ultra-high pressure metamorphic rocks in the Qilian orogen and obtained valuable achievements.However,a hot debate exists on the basement property,the distribution of ophiolite,and the boundaries of tectonic units.Large-scale high-precision aeromagnetic surveys have recently been conducted in the Qilian Orogenic belt and adjacent areas.In this study,we are trying to analysis the tectonic framework of the Qilian Orogen using 1:500,000 aeromagnetic data.The results provide geophysical perspectives for studying the structural framework and deformation of this area.According to the aeromagnetic∆T anomaly map,the central and Southern Qilian have the same magnetic anomaly feature that noticeably differs from the North Qilian Orogenic belt and the Qaidam Block.This result indicates that the central and Southern Qilian have a unified magnetic basement and differ from the North Qilian orogenic belt and Qaidam Block.The map shows the distribution of ophiolite in the North Qilian orogenic belt.Linear magnetic anomalies represent the ophiolites because the mafic–ultramafic rocks usually have high magnetic susceptibility.The ophiolite belts are continuously distributed in the western part of North Qilian orogenic belt and have a large scale.However,the scale of the ophiolite belt and the outcropping of mafic–ultramafic rocks reduces when they pass through Qilian County to the east.The results indicate differences in the evolution process between the eastern and western parts of North Qilian,with Qilian County as the transition zone.This study also systematically defines the geophysical boundaries of the Qaidam Block,Qilian Block,North Qilian Orogenic belt,and Alxa block.It is proposed that the sinistral displacement of the Altun Fault is adjusted and absorbed by the series of NE-trending faults in the Qilian orogen and merge into the Longshoushan–Gushi Fault.The extension of the North Qilian Orogenic belt is strengthened by the neotectonics movement along the shearing direction,which separated the North Qilian Orogenic belt into several segments and formed a series of northeast-trending faults.展开更多
Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt(EKOB)until present.Shitoukengde(STKD)intrusion is considered to have the potential to become a large Ni-Co deposit in East Kun...Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt(EKOB)until present.Shitoukengde(STKD)intrusion is considered to have the potential to become a large Ni-Co deposit in East Kunlun.In order to discuss the metallogenic potential,this study present petrographical,geochemical data,and zircon U-Pb dating for the STKD intrusion.The STKD intrusion is hosted within mafic-ultramafic rocks which contain peridotite,pyroxenite and gabbro,and mainly intruded into the marble of the Paleoproterozoic Jinshuikou Group.Harzburgite and orthopyroxenite are the main country rocks for the Cu-Ni sulfide mineralization.Combine with the positiveε_(Hf)(t)values(+1.1 to+8.6)of zircons,the enrichment of LILEs,depletion of HFSEs,and lower Ce/Pb ratios of whole rocks indicate that the parental magma was originated from the depleted asthenospheric mantle and experienced 5%–15%crustal contamination.Troctolite formed during the Early Devonian and it has weighted mean^(206)Pb/^(238)U age of 412 Ma.Regional background information has indicated that the post-collisional extension setting has already existed during the Early Devonian,leading to the formation of STKD intrusion and Cu-Ni sulfide mineralization.STKD intrusion may have the potential to be one economic Cu-Ni sulfide deposit but seems unlikely to be a super-large one.展开更多
The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,w...The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province.展开更多
Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two import...Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.展开更多
The finite deformation structures recorded in the Essakane area, located in the northeast corner of Burkina Faso, highlight three major compressive deformation phases, successively named D1, D2, and D3. The D1 event p...The finite deformation structures recorded in the Essakane area, located in the northeast corner of Burkina Faso, highlight three major compressive deformation phases, successively named D1, D2, and D3. The D1 event phase, trending NE-SW, is characterised by P1 folds and S1 axial plane schistosity. The D2 phase trending NW-SE is characterised by folds P2, schistosity (S2) and shear (C) planes. And the D3 phase trending NNE-SSW to N-S is characterised by P3 folds, crenulation microfolds and S3 spaced schistosity. It has also been noted that gold mineralizations are mainly hosted in quartz, carbonate, pyrite, and arsenopyrite veins. Structural interpretation indicates that these veins are organized into lenticular bodies that were formed during the first two deformation phases (D1 and D2). This suggests a strong structural control typical of orogenic gold concentrations.展开更多
Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential...Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential. Petrographic study and geochemical classification revealed that while Ayetoro boss is microgranite constituting an aggregate of medium grained muscovite, quartz and biotite minerals, Sasaro stock is micromonzonite made up of medium grained albite, orthoclase, biotite, hornblende and pyroxene. Geotectonic setting showed the boss and stock are orogenic, probably derived from the same upper mantle magma as Igarra batholith that got contaminated by crustal materials responsible for their difference in lithology. Their mineralization potential showed that the massive Ayetoro microgranite with no appreciable trace-element contents cannot serve as host of any metallic deposit, and should be suitable for industrial applications. Whereas, the silicified, highly sheared Sasaro monzonite, with elevated level of some trace elements contents as Ag, Au and Cu, could harbor Ag-Au-Cu deposit.展开更多
The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before enter...The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2901902 and 2019YFC0605202)。
文摘The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.
基金financially supported by the State Key Research Development Program of China(Grant No.2022YFF0800903)the National Natural Science Foundation of China(NSFC)(Grant Nos.42261144669 and 42273073)。
文摘High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of granites,granitic porphyries,and granodiorites.Zircon U-Pb age data indicate that the Weixi granitoids formed at 248-240 Ma and were coeval with silicic volcanic rocks of the Weixi arc.The Weixi granitoids are enriched in Rb,Th,and U,depleted in Ba,Sr,Nb,Ta,and Ti,and have high light/heavy rare earth element ratios and slightly negative Eu anomalies.The Weixi granitoids have negative ε_(Nd)(t)values(-9.8 to-7.8)and negative zircon ε_(Hf)(t)values(-12.02 to-5.11).The geochemical and isotopic features suggest the Weixi granitoids were derived by partial melting of ancient crustal material.The Weixi granitoids and silicic volcanic rocks were derived from the same magma by crystal accumulation and melt extraction,respectively,and they record the formation of a continental arc in the central Sanjiang orogenic belt.
基金financially supported by the Russian Science Foundation (RSF) (Grant No. 22-77-00082)financially supported of grant 075-15-2021-680 of the Ministry of Science and Higher Education of the Russian Federation
文摘The combined petrographic,petrological,geochemical and geochronological study of the Neoproterozoic gneisses of the Sarychabyn and Baskan complexes of the Junggar Alataw of South Kazakhstan elucidate the Precambrian tectonic evolution of the Aktau–Yili terrane.It is one of the largest Precambrian crustal blocks in the western Central Asian orogenic belt.The U-Pb single-grain zircon ages indicate that granite-gneisses formed from the same source and crystallised in the early Neoproterozoic ca.930–920 Ma.The chemical composition of gneisses corresponds to A2-type granites.The whole-rock Nd isotopic characteristics(εNd(t)=−4.9 to−1.0 and TNd(DM-2st)=1.9 to 1.7 Ga)indicate the involvement of Paleoproterozoic crustal rocks in magma generation.Early Neoproterozoic ca.930–920 Ma A-type granitoids in the Aktau–Yili terrane of South and Central Kazakhstan might reflect within-plate magmatism adjacent to the collisional belt or a local extension setting in back-arc areas of the continental arc.
基金supported by the National Natural Science Foundation of China(Grant Nos.42125203 and 42102107)the National Key Research and Development Project of China(Grant No.2020YFA0714802)+1 种基金the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds from the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,China University of Geosciences(Beijing)(Grant No.2652023001)the 111 Project of the Ministry of Science and Technology(Grant No.BP0719021).
文摘The Ailaoshan Orogen in the southeastern Tibet Plateau,situated between the Yangtze and Simao blocks,underwent a complex structural,magmatic,and metamorphic evolution resulting in different tectonic subzones with varying structural lineaments and elemental concentrations.These elements can conceal or reduce anomalies due to the mutual effect between different anomaly areas.Dividing the whole zone into subzones based on tectonic settings,ore cluster areas,or sample catchment basins(Scb),geochemical and structural anomalies associated with gold(Au)mineralization have been identified utilizing mean plus twice standard deviations(Mean+2STD),factor analysis(FA),concentration-area(CA)modeling of stream sediment geochemical data,and lineament density in both the Ailaoshan Orogen and the individual subzones.The FA in the divided 98 Scbs with 6 Scbs containing Au deposits can roughly ascertain unknown rock types,identify specific element associations of known rocks and discern the porphyry or skarn-type Au mineralization.Compared with methods of Mean+2STD and C-A model of data in the whole orogen,which mistake the anomalies as background or act the background as anomalies,the combined methods of FA and C-A in the separate subzones or Scbs works well in regional metallogenic potential analysis.Mapping of lineament densities with a 10-km circle diameter is not suitable to locate Au deposits because of the delineated large areas of medium-high lineament density.In contrast,the use of circle diameters of 1.3 km or 1.7 km in the ore cluster scale delineates areas with a higher concentration of lineament density,consistent with the locations of known Au deposits.By analyzing the map of faults and Au anomalies,two potential prospecting targets,Scbs 1 and 63 with a sandstone as a potential host rock for Au,have been identified in the Ailaoshan Orogen.The use of combined methods in the divided subzones proved to be more effective in improving geological understanding and identifying mineralization anomalies associated with Au,rather than analyzing the entire large area.
文摘The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ages,Hf isotopic and geochemical data on the Xingxingxia biotite granite,amazonite granite and granitic pegmatite in Central Tianshan,NW China.Zircon U-Pb dating yielded formation ages of 242 Ma for the biotite granite and 240 Ma for the amazonite granite.These granitoid rocks have high K_(2)O with low MgO and CaO contents.They are enriched in Nb,Ta,Hf and Y,while being depleted in Ba and Sr,showing flat HREE patterns and negative Eu anomalies.They have typical A-type granite geochemical signatures with high Ga/A_(1)(8–13)and TFeO/(TFeO+MgO)ratios,showing an A_(2) affinity for biotite granite and an A_(1) affinity for amazonite granite and granitic pegmatite.Zircon ε_(Hf)(t)values of the granitoids are 0.45–2.66,with Hf model ages of 0.99–1.17 Ga.This suggests that these A-type granites originated from partial melting of the lower crust.We propose that Xingxingxia Triassic A-type granites formed under lithospheric extension from post-orogenic to anorogenic intraplate settings and NE-trending regional strike-slip fault-controlled magma emplacement in the upper crust.
基金supported by the China Geological Survey(Grant No.DD20230254)。
文摘The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth in Central Asia.This orogen developed through the episodic amalgamation and accretion of continental margin arcs,island arcs,ophiolites,and accretionary wedges,undergoing a complex process of accretion and evolution.Since the Phanerozoic,the Beishan orogen has experienced multiple phases of magmatic and collision events.The intricate distribution of magmatic arc rocks has obscured the complete basement traces,and the spatial superposition of multiple magmatic arc phases has complicated the study of its evolutionary history.
文摘The Paleoproterozoic was a critical time in whether modern-style plate tectonics had become globally dominant(e.g.,Wan et al.,2020).The Capricorn Orogen witnessed the assembly of the Pilbara and Yilgarn Cratons and an exotic microcontinent,the Glenburgh Terrane,to form the West Australia Craton(WAC)through two collisional orogenic events,the 2215–2145 Ma Ophthalmian and 2005–1950 Ma Glenburgh Orogenies(Johnson et al.,2013;Fig.1).Compared to other Proterozoic orogenic belts in Australia,the Capricorn Orogen preserves‘complete'opposing continental margin successions,together with intervening arc fragments associated with oceanic closure and foreland basins associated with collisional loading(Cawood et al.,2009).
基金Funding for this project was provided by the China Geological Survey Project(Grant Nos.DD20230316 and DD20190099)Deep Resources Exploration and Mining Project(Grant No.2019YFC0605202).
文摘During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Nevertheless,the closure time of the PAO is still under debate.Thus,to identify the origin of the PAO,the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine,polymict clastic boulders and sandstones in the Shoushangou Formation within the basin.The analyses revealed magmatic activity and tectonic evolution.The conglomerates include megaclasts of granite(298.8±9.1 Ma)and granodiorite porphyry(297.1±3.1 Ma),which were deposited by muddy debris flow.Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite,characterized by low Zr+Nb+Ce+Y and low Ga/Al values.The granitoid boulders were formed in island arc setting,indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin.Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks.Detrital zircon U-Pb age cluster of 330–280 Ma was obtained,indicating input from granite,ophiolite,Xilin Gol complex,and Carboniferous sources to the south.The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc.The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO.The backarc basin and intrusive rocks,in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol,confirm the presence of an Early Permian trencharc-basin system in the region,represented by the Baolidao arc and Xi Ujimqin backarc basin.This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.
基金financially supported by the project of nuclear energy development。
文摘The Bayingobi basin is located in the middle of Central Asia Orogenic Belt,at the intersection of Paleo-Asian Ocean and Tethys Ocean,as well as the junction of multiple tectonic plates.This unique tectonic setting underpins the basin's intricate history of tectonic activity.To unravel the multifaceted tectono-thermal evolution within the southwestern region of the basin and to elucidate the implications of sandstone-hosted uranium mineralization,granitic and clastic rock samples were collected from the Zongnai Mts.uplift and Yingejing depression,and apatite fission track(AFT)dating and thermal history simulation analysis were performed.AFT dating findings reveal that the apparent ages of all samples fall within the range of 244 Ma to 112 Ma.In particular,the bedrock of the Zongnai Mts.and Jurassic detrital apatite fission tracks have undergone complete annealing,capturing the uplift-cooling age.Meanwhile,the AFT ages of Cretaceous detrital rocks are either equivalent to or notably exceed the age of sedimentary strata,signifying the cooling age of the provenance.A comprehensive examination of AFT ages and palaeocurrent direction analyses suggests that the Cretaceous source in the Tamusu area predominantly originated from the central and southern sectors of the Zongnai Mts.uplift.However,at a certain juncture during the Late Early Cretaceous,the Cretaceous provenance expanded to include the northern part of the Zongnai Mts.uplift.Based on the results of thermal history simulations and previous studies,it is considered that the Tamusu area has undergone four distinct tectonic uplift events since the Late Paleozoic.The first is the Late Permian to Early Triassic(260-240 Ma),which is associated with the closure of the Paleo-Asian Ocean and the accretionary orogeny within the Alxa region.The second uplift event took place in the Early Jurassic(190-175 Ma)and corresponded to intraplate orogeny following the closure of the Paleo-Asian Ocean.The third uplift event is the Late Jurassic to Early Cretaceous(160-120 Ma),which is linked to the East Asia's position as the convergence center of multiple tectonic plates during this period.The fourth uplift event is linked to the Late Early Cretaceous(112-100 Ma),driven either by the westward subduction of the eastern Pacific plate or the mantle upwelling resulting from the Bangong-Nujiang oceanic lithosphere subduction and slab break-off.The primary stress orientation for the first three tectonic uplift phases approximated a nearly SN direction,while the fourth stage featured a principal stress direction of NW.The fourth tectonic uplift event of the Late Early Cretaceous and basaltic eruption thermal event during this period likely exerted a significant influence on the formation of the Tamusu sandstone-hosted uranium deposit.
基金funded by Gansu Provincial Natural Science Foundation (Grant Numbers 21JR7RA503 and22JR5RA819)the Fundamental Research Funds for the Central Universities (Grant lzujbky-2021-ct07)+1 种基金the Key Talent Project of Gansu Province (2022-Yangzhenxi)the National Second Expedition to the Tibetan Plateau (2019QZKK0704)。
文摘Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and systematic whole-rock geochemical data for the Haoquangou and Liujiaxia granitoids within the North Qilian orogenic belt and the Qilian Block, respectively, to constrain their petrogenesis, and the Silurian tectonic evolution of the Qilian orogenic belt. Zircon U–Pb ages indicate that the Haoquangou and Liujiaxia intrusions were emplaced at423 ± 3 Ma and 432 ± 4 Ma, respectively. The Haoquangou granodiorites are calc-alkaline, while the Liujiaxia granites belong to the high-K calc-alkaline series.Both are peraluminous in composition and have relatively depleted Nd isotopic [ε_(Nd)(t) =(-3.9 – + 0.6)] characteristics compared with regional basement rocks, implying their derivation from a juvenile lower crust. They show adakitic geochemical characteristics and were generated by partial melting of thickened lower continental crust. Postcollisional extensional regime related to lithospheric delamination was the most likely geodynamic mechanism for the generation of the Haoquangou granodiorite, while the Liujiaxia granites were generated in a compressive setting during continental collision between the Qaidam and Qilian blocks.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD055)the Taishan Scholars(Grant No.tstp 20231214)the National Natural Science Foundation of China(Grant No.42372247).
文摘Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.
基金financially supported by National Natural Science Foundation of China (Grant No. 42273063)the Young Elite Scientists Sponsorship (YESS) Program of the China Association for Science and Technology (Grant No. YESS20220661)。
文摘The Mibei gold deposit,located in the southwestern part of the Xuefengshan uplift zone,the middle section of the Jiangnan orogenic belt in southern China,has estimated gold resources of approximately seven tons.This deposit is primarily a quartz vein-type gold deposit,with ore bodies occurring mainly within Neoproterozoic metasediments.The main metallic minerals in the ore are pyrite,chalcopyrite,and arsenopyrite.In this study,the petrography and microthermometry of ore-forming fluid inclusions,oxygen isotopes of gold-bearing quartz,and sulfur isotopes of goldbearing sulfides and arsenopyrite were analyzed.Three types of fluid inclusions were identified:type Ⅰa three-phase inclusions comprising vapor and two phases of liquids(V_(CO_(2))+L_(CO_(2))+L_(H2O)),type Ⅰb two-phase liquids(L_(CO_(2))+L_(H2O)),typeⅡ two-phase vapor-rich inclusions(V/V+L> 50%),and type Ⅲ pure liquid inclusions.Type Ⅰ inclusions were heated uniformly to the liquid phase,type Ⅱ inclusions were heated uniformly to the gas phase,and type Ⅲ inclusions were heated without change.In general,the temperature range of homogenization to liquid phase of fluid inclusions in the Mibei gold deposit is 204-227℃.The salinity of the inclusion ranges from 4.6 to 12.2 wt% NaCl equiv.The δ~(18)O_(SMOW) of gold-bearing quartz varies from 16.9‰ to 17.5‰.The δ~(18)O_(H2O) of gold-bearing quartz are varied from 6.5‰ to 7.5‰.The δ~(34)S values of gold-bearing pyrite range from 1.7‰ to 6.8‰.The δ~(34)S values of gold-bearing arsenopy rite range from 5.6%o to 5.9‰.Theδ~(34)S values of pyrite from wall rocks slate range from 6.4‰ to 11.6‰.This evidence implies that the ore-forming fluids of the Mibei gold deposit originated from magmatic-hydrothermal processes,mixing with minor S from the surrounding metasediments.Combined with the evolution of the Jiangnan orogenic belt,due to the magmatic and tectonic activities of the Xuefengshan uplift during the Caledonian period,the fault seal mechanism controlled the ore-forming process.Overall,the Mibei gold deposit is more akin to a magmatic-hydrothermal gold deposit.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42302235,41830211,42272100)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.23ptpy143)。
文摘It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Mafic dike swarms carry important information on the deep earth(including mantle)geodynamics and geochemical evolution.In the Jiangnan Orogen(South China).there is no information on whether the Mesozoic magmatic activities in this region are also directly related to the Pacific subduction or not.In this study,we present detailed zircon U-Pb geochronological,wholerock element and Sr-Nd isotope data for Early Cretaceous Tuanshanbei dolerite dikes,and provide new constraints on the condition of the lithospheric mantle and mantle dynamics of the SCB during that time.LA-ICP-MS zircon U-Pb dating suggests that this dolerite erupted in the Early Cretaceous(~145 Ma).All samples have alkaline geochemical affinities with K_(2)O+Na_(2)O=3.11-4.04 wt%,K_(2)O/Na_(2)O=0.50-0.72,and Mg^(#)=62.24-65.13.They are enriched in LILE but depleted in HFSE with higher initial^(87)Sr/^(86)Sr ratio(0.706896-0.714743)and lower ε_(Nd)(t)(-2.61 to-1.67).They have high Nb/U,Nb/La,La/Sm and Rb/Sr,and low La/Nb,La/Ta,Ce/Pb,Ba/Rb,Tb/Yb and Gd/Yb ratios.Such geochemical signatures suggest that the fractional crystallization is obvious but crustal contamination play a negligible role during magmatic evolution.Tuanshanbei dolerite were most likely derived from low-degree(2%-5%)partial melting of a phlogopite-bearing mantle material consisted of~85% spinel peridotite and~15% garnet peridotite previously metasomatized by asthenospherederived fluids/melts with minor subduction-derived fluids/melts.Slab-rollback generally lead to the upwelling of the hot asthenosphere.The upwelling of asthenosphere consuming the lithospheric mantle by thermo-mechanical-chemical erosion.The lithospheric mantle may have partially melted due to the heating by the upwelling asthenosphere and lithospheric extension.It is inferred that the Tuanshanbei dolerite might be associated with the initial slab rollback and corresponding lithospheric extension occurred potentially at ca.145 Ma.
基金supported by the National Natural Science Foundation of China grant(U2244220)China Geological Survey Project grant(DD20190551,DD20230351)。
文摘The Qilian Orogenic belt is one of the typical orogenic belts globally and a natural laboratory for studying plate tectonics.Many researchers have studied the ophiolite and high pressure and ultra-high pressure metamorphic rocks in the Qilian orogen and obtained valuable achievements.However,a hot debate exists on the basement property,the distribution of ophiolite,and the boundaries of tectonic units.Large-scale high-precision aeromagnetic surveys have recently been conducted in the Qilian Orogenic belt and adjacent areas.In this study,we are trying to analysis the tectonic framework of the Qilian Orogen using 1:500,000 aeromagnetic data.The results provide geophysical perspectives for studying the structural framework and deformation of this area.According to the aeromagnetic∆T anomaly map,the central and Southern Qilian have the same magnetic anomaly feature that noticeably differs from the North Qilian Orogenic belt and the Qaidam Block.This result indicates that the central and Southern Qilian have a unified magnetic basement and differ from the North Qilian orogenic belt and Qaidam Block.The map shows the distribution of ophiolite in the North Qilian orogenic belt.Linear magnetic anomalies represent the ophiolites because the mafic–ultramafic rocks usually have high magnetic susceptibility.The ophiolite belts are continuously distributed in the western part of North Qilian orogenic belt and have a large scale.However,the scale of the ophiolite belt and the outcropping of mafic–ultramafic rocks reduces when they pass through Qilian County to the east.The results indicate differences in the evolution process between the eastern and western parts of North Qilian,with Qilian County as the transition zone.This study also systematically defines the geophysical boundaries of the Qaidam Block,Qilian Block,North Qilian Orogenic belt,and Alxa block.It is proposed that the sinistral displacement of the Altun Fault is adjusted and absorbed by the series of NE-trending faults in the Qilian orogen and merge into the Longshoushan–Gushi Fault.The extension of the North Qilian Orogenic belt is strengthened by the neotectonics movement along the shearing direction,which separated the North Qilian Orogenic belt into several segments and formed a series of northeast-trending faults.
基金financially supported by the National Natural Science Foundation of China(41272052)the projects(1212011120158 and 12120114080101)of the China Geological Survey。
文摘Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt(EKOB)until present.Shitoukengde(STKD)intrusion is considered to have the potential to become a large Ni-Co deposit in East Kunlun.In order to discuss the metallogenic potential,this study present petrographical,geochemical data,and zircon U-Pb dating for the STKD intrusion.The STKD intrusion is hosted within mafic-ultramafic rocks which contain peridotite,pyroxenite and gabbro,and mainly intruded into the marble of the Paleoproterozoic Jinshuikou Group.Harzburgite and orthopyroxenite are the main country rocks for the Cu-Ni sulfide mineralization.Combine with the positiveε_(Hf)(t)values(+1.1 to+8.6)of zircons,the enrichment of LILEs,depletion of HFSEs,and lower Ce/Pb ratios of whole rocks indicate that the parental magma was originated from the depleted asthenospheric mantle and experienced 5%–15%crustal contamination.Troctolite formed during the Early Devonian and it has weighted mean^(206)Pb/^(238)U age of 412 Ma.Regional background information has indicated that the post-collisional extension setting has already existed during the Early Devonian,leading to the formation of STKD intrusion and Cu-Ni sulfide mineralization.STKD intrusion may have the potential to be one economic Cu-Ni sulfide deposit but seems unlikely to be a super-large one.
基金support from several sources,including the Backbone Teacher Training Program(10912-SJGG2021-04233)the Teaching Reform Project of Chengdu University of Technology(JG2130131)+1 种基金the University-Industry Collaborative Education Project,Ministry of Education,China(22097130210756)National Natural Science Foundation of China(42272129).
文摘The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province.
基金Supported by the National Science and Technology Major Project(2017ZX05001)CNPC Science and Technology Project(2021DJ22).
文摘Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.
文摘The finite deformation structures recorded in the Essakane area, located in the northeast corner of Burkina Faso, highlight three major compressive deformation phases, successively named D1, D2, and D3. The D1 event phase, trending NE-SW, is characterised by P1 folds and S1 axial plane schistosity. The D2 phase trending NW-SE is characterised by folds P2, schistosity (S2) and shear (C) planes. And the D3 phase trending NNE-SSW to N-S is characterised by P3 folds, crenulation microfolds and S3 spaced schistosity. It has also been noted that gold mineralizations are mainly hosted in quartz, carbonate, pyrite, and arsenopyrite veins. Structural interpretation indicates that these veins are organized into lenticular bodies that were formed during the first two deformation phases (D1 and D2). This suggests a strong structural control typical of orogenic gold concentrations.
文摘Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential. Petrographic study and geochemical classification revealed that while Ayetoro boss is microgranite constituting an aggregate of medium grained muscovite, quartz and biotite minerals, Sasaro stock is micromonzonite made up of medium grained albite, orthoclase, biotite, hornblende and pyroxene. Geotectonic setting showed the boss and stock are orogenic, probably derived from the same upper mantle magma as Igarra batholith that got contaminated by crustal materials responsible for their difference in lithology. Their mineralization potential showed that the massive Ayetoro microgranite with no appreciable trace-element contents cannot serve as host of any metallic deposit, and should be suitable for industrial applications. Whereas, the silicified, highly sheared Sasaro monzonite, with elevated level of some trace elements contents as Ag, Au and Cu, could harbor Ag-Au-Cu deposit.
基金substantially supported by the National Nature Science Foundation of China(Grant No.41872220)。
文摘The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.