A reduced state Soft Input Soft Output (SISO) a posteriori probability algorithm for Seri-ally Concatenated Continuous Phase Modulation (SCCPM) is proposed in this paper. Based on the Reduced State Sequence Detection ...A reduced state Soft Input Soft Output (SISO) a posteriori probability algorithm for Seri-ally Concatenated Continuous Phase Modulation (SCCPM) is proposed in this paper. Based on the Reduced State Sequence Detection (RSSD),it has more general form compared with other reduced state SISO algorithms. The proposed algorithm can greatly reduce the state number,thus leads to the computation complexity reduction. It also minimizes the degradation in Euclidean distance with decision feedback in the reduced state trellis. Analysis and simulation results show that the perform-ance degradation is little with proper reduction scheme.展开更多
Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algor...Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algorithm is independent of the number of transmitting/receiving antennas and constellation size. It provides a high throughput and reduced Bit Error Rate (BER) with the performance close to Maximum Likelihood Detection (MLD) method. The main innovations are the nodes that are expanded and visited based on MPED algorithm and it keeps track of finally selecting the best candidates at each cycle. It allows its complexity to scale linearly with the modulation order. Using Quadrature Amplitude Modulation (QAM) the complex domain input signals are modulated and are converted into wavelet packets and these packets are transmitted using Additive White Gaussian Noise (AWGN) channel. Then from the number of received signals the best signal is detected using MPED based K-best algorithm. It provides the exact best node solution with reduced complexity. The pipelined VLSI architecture is the best suited for implementation because the expansion and sorting cores are data driven. The proposed method is implemented targeting Xilinx Virtex 5 device for a 4 × 4, 64-QAM system and it achieves throughput of 1.1 Gbps. The results of resource utilization are tabulated and compared with the existing algorithms.展开更多
In this paper, serially concatenated continuous phase modulation (SCCPM) system is analyzed and a reduced state soft input soft output (SlSO) a posteriori probability algorithm is proposed. Based on the reduced st...In this paper, serially concatenated continuous phase modulation (SCCPM) system is analyzed and a reduced state soft input soft output (SlSO) a posteriori probability algorithm is proposed. Based on the reduced state sequence detection (RSSD), it has the more general form compared with other reduced state SISO algorithms. The proposed algorithm can greatly reduce the state number, thus leads to the computation complexity reduction. It also minimizes the degradation in Euclidean distance with decision feedback in the reduced state trellis. Analysis and simulation results show that the performance degradation is little with proper reduction scheme.展开更多
基金Supported by NSFC & Microsoft Asia (60372048)China TRAPOYT, NSFC key project (60496316)+2 种基金863 Project (2005AA123910)RFDP (20050701007)MOE Key Project (104171).
文摘A reduced state Soft Input Soft Output (SISO) a posteriori probability algorithm for Seri-ally Concatenated Continuous Phase Modulation (SCCPM) is proposed in this paper. Based on the Reduced State Sequence Detection (RSSD),it has more general form compared with other reduced state SISO algorithms. The proposed algorithm can greatly reduce the state number,thus leads to the computation complexity reduction. It also minimizes the degradation in Euclidean distance with decision feedback in the reduced state trellis. Analysis and simulation results show that the perform-ance degradation is little with proper reduction scheme.
文摘Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algorithm is independent of the number of transmitting/receiving antennas and constellation size. It provides a high throughput and reduced Bit Error Rate (BER) with the performance close to Maximum Likelihood Detection (MLD) method. The main innovations are the nodes that are expanded and visited based on MPED algorithm and it keeps track of finally selecting the best candidates at each cycle. It allows its complexity to scale linearly with the modulation order. Using Quadrature Amplitude Modulation (QAM) the complex domain input signals are modulated and are converted into wavelet packets and these packets are transmitted using Additive White Gaussian Noise (AWGN) channel. Then from the number of received signals the best signal is detected using MPED based K-best algorithm. It provides the exact best node solution with reduced complexity. The pipelined VLSI architecture is the best suited for implementation because the expansion and sorting cores are data driven. The proposed method is implemented targeting Xilinx Virtex 5 device for a 4 × 4, 64-QAM system and it achieves throughput of 1.1 Gbps. The results of resource utilization are tabulated and compared with the existing algorithms.
基金the National Natural Science Foundation of China (Grant Nos. 60496316, 60532060 and 60572146)the Research Fund for the Doctoral Program of Higher Education (Grant No. 20050701007)China Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, MOE Key Project (Grant No. 107103)
文摘In this paper, serially concatenated continuous phase modulation (SCCPM) system is analyzed and a reduced state soft input soft output (SlSO) a posteriori probability algorithm is proposed. Based on the reduced state sequence detection (RSSD), it has the more general form compared with other reduced state SISO algorithms. The proposed algorithm can greatly reduce the state number, thus leads to the computation complexity reduction. It also minimizes the degradation in Euclidean distance with decision feedback in the reduced state trellis. Analysis and simulation results show that the performance degradation is little with proper reduction scheme.