In an underdetermined system,compressive sensing can be used to recover the support vector.Greedy algorithms will recover the support vector indices in an iterative manner.Generalized Orthogonal Matching Pursuit(GOMP)...In an underdetermined system,compressive sensing can be used to recover the support vector.Greedy algorithms will recover the support vector indices in an iterative manner.Generalized Orthogonal Matching Pursuit(GOMP)is the generalized form of the Orthogonal Matching Pursuit(OMP)algorithm where a number of indices selected per iteration will be greater than or equal to 1.To recover the support vector of unknown signal‘x’from the compressed measurements,the restricted isometric property should be satisfied as a sufficient condition.Finding the restricted isometric constant is a non-deterministic polynomial-time hardness problem due to that the coherence of the sensing matrix can be used to derive the sufficient condition for support recovery.In this paper a sufficient condition based on the coherence parameter to recover the support vector indices of an unknown sparse signal‘x’using GOMP has been derived.The derived sufficient condition will recover support vectors of P-sparse signal within‘P’iterations.The recovery guarantee for GOMP is less restrictive,and applies to OMP when the number of selection elements equals one.Simulation shows the superior performance of the GOMP algorithm compared with other greedy algorithms.展开更多
Matching pursuits algorithm (MP), as an adaptive signal representation upon overcomplete fundamental waveforms, is a powerful tool in many applications. However, MP suffers from distinguishing a doublet structure. In ...Matching pursuits algorithm (MP), as an adaptive signal representation upon overcomplete fundamental waveforms, is a powerful tool in many applications. However, MP suffers from distinguishing a doublet structure. In this paper, the authors proposed an algorithm called compete matching pursuits (CMP), which can overcome this shortcoming and performance very well.展开更多
A multichannel matching pursuit(MMP)algorithm is proposed to decompose the one-dimensional multichannel non-stationary magnetoencephalography(MEG)signal at a single-trial level.The single-channel matching pursuit...A multichannel matching pursuit(MMP)algorithm is proposed to decompose the one-dimensional multichannel non-stationary magnetoencephalography(MEG)signal at a single-trial level.The single-channel matching pursuit(MP)linearly decomposes the signal into a set of Gabor atoms,which are adaptively chosen from an overcomplete dictionary with good time-frequency characters.The MMP is the extension of the MP,which represents multichannel signals using linear combination of Gabor atoms with the same occurrence,frequency,phase,and time width,but varying amplitude in all channels.The results demonstrate that the MMP can optimally reconstruct the original signal and automatically remove artifact noises.Moreover,the coherence between the 3D source reconstruction and the prior knowledge of psychology further suggests that the MMP is effective in MEG single-trial processing.展开更多
To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-t...To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.展开更多
The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realis...The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realistic solutions.The empirical orthonormal function(EOF)is capable of a very large compression of the data set.In this paper,the non-linear response of the sound pressure to SSP is linearized using a first order Taylor expansion,and the pressure is expanded in a sparse domain using EOFs.Since the parameters of the inverse model are sparse,compressive sensing(CS)can help solve such underdetermined problems accurately,efficiently,and with enhanced resolution.Here,the orthogonal matching pursuit(OMP)is used to estimate range-independent acoustic SSPs using the simulated acoustic field.The superior resolution of OMP is demonstrated with the SSP data from the South China Sea experiment.By shortening the duration of the training set,the temporal correlation between EOF and test sets is enhanced,and the accuracy of sound velocity inversion is improved.The SSP estimation error versus depth is calculated,and the 99%confidence interval of error is within±0.6 m/s.The 82%of mean absolute error(MAE)is less than 1 m/s.It is shown that SSPs can be well estimated using OMP.展开更多
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-dom...The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.展开更多
Appealing to the Clifford analysis and matching pursuits, we study the adaptive decompositions of functions of several variables of finite energy under the dictionaries consisting of shifted Cauchy kernels. This is a ...Appealing to the Clifford analysis and matching pursuits, we study the adaptive decompositions of functions of several variables of finite energy under the dictionaries consisting of shifted Cauchy kernels. This is a realization of matching pursuits among shifted Cauchy kernels in higher-dimensional spaces. It offers a method to process signals in arbitrary dimensions.展开更多
To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separatio...To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.展开更多
A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. F...A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.展开更多
In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure with local self-adapt...In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure with local self-adaption. We expand the time-frequency dictionary library with Ricker, Morlet, and mixed phase seismic wavelets, to make the method more suitable for seismic signal time-frequency decomposition. In this paper, we demonstrated the algorithm theory using synthetic seismic data, and tested the method using synthetic data with 25% noise. We compared the matching pursuit results of the time-frequency dictionaries. The results indicated that the dictionary which matched the signal characteristics better would obtain better results, and can reflect the information of seismic data effectively.展开更多
Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided ...Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided waves modes of the reflection signals in pipes NDT very hard. In this work, firstly, the experiments are carried out to test two kinds of stainless steel pipes by applying guided waves NDT, one is integrated pipe and another is non-integrated pipe with a small hole defect, and the detected guided waves echo signals are respectively obtained. Secondly, the measured signals are processed by matching pursuit method and the Chirplet matching atom parameters are calculated. By calculating the time-frequency distributions spectrum of detected guided waves echo signals, torsional, flexural and longitudinal guided waves modes are identified from the intact pipe, and the two wave-packets with torsional and flexural guided waves modes are also identified from the pipe with hole defect. The results showed that the matching pursuit method has a tremendous advantage to identify different guided waves modes in pipes nondestructive testing.展开更多
To obtain the sparse decomposition and flexible representation of traffic images,this paper proposes a fast matching pursuit for traffic images using differential evolution. According to the structural features of tra...To obtain the sparse decomposition and flexible representation of traffic images,this paper proposes a fast matching pursuit for traffic images using differential evolution. According to the structural features of traffic images,the introduced algorithm selects the image atoms in a fast and flexible way from an over-complete image dictionary to adaptively match the local structures of traffic images and therefore to implement the sparse decomposition. As compared with the traditional method and a genetic algorithm of matching pursuit by using extensive experiments,the differential evolution achieves much higher quality of traffic images with much less computational time,which indicates the effectiveness of the proposed algorithm.展开更多
Compressive sensing theory mainly includes the sparsely of signal processing,the structure of the measurement matrix and reconstruction algorithm.Reconstruction algorithm is the core content of CS theory,that is,throu...Compressive sensing theory mainly includes the sparsely of signal processing,the structure of the measurement matrix and reconstruction algorithm.Reconstruction algorithm is the core content of CS theory,that is,through the low dimensional sparse signal recovers the original signal accurately.This thesis based on the theory of CS to study further on seismic data reconstruction algorithm.We select orthogonal matching pursuit algorithm as a base reconstruction algorithm.Then do the specific research for the implementation principle,the structure of the algorithm of AOMP and make the signal simulation at the same time.In view of the OMP algorithm reconstruction speed is slow and the problems need to be a given number of iterations,which developed an improved scheme.We combine the optimized OMP algorithm of constraint the optimal matching of item selection strategy,the backwards gradient projection ideas of adaptive variance step gradient projection method and the original algorithm to improve it.Simulation experiments show that improved OMP algorithm is superior to traditional OMP algorithm of improvement in the reconstruction time and effect under the same condition.This paper introduces CS and most mature compressive sensing algorithm at present orthogonal matching pursuit algorithm.Through the program design realize basic orthogonal matching pursuit algorithms,and design realize basic orthogonal matching pursuit algorithm of one-dimensional,two-dimensional signal processing simulation.展开更多
文摘In an underdetermined system,compressive sensing can be used to recover the support vector.Greedy algorithms will recover the support vector indices in an iterative manner.Generalized Orthogonal Matching Pursuit(GOMP)is the generalized form of the Orthogonal Matching Pursuit(OMP)algorithm where a number of indices selected per iteration will be greater than or equal to 1.To recover the support vector of unknown signal‘x’from the compressed measurements,the restricted isometric property should be satisfied as a sufficient condition.Finding the restricted isometric constant is a non-deterministic polynomial-time hardness problem due to that the coherence of the sensing matrix can be used to derive the sufficient condition for support recovery.In this paper a sufficient condition based on the coherence parameter to recover the support vector indices of an unknown sparse signal‘x’using GOMP has been derived.The derived sufficient condition will recover support vectors of P-sparse signal within‘P’iterations.The recovery guarantee for GOMP is less restrictive,and applies to OMP when the number of selection elements equals one.Simulation shows the superior performance of the GOMP algorithm compared with other greedy algorithms.
文摘Matching pursuits algorithm (MP), as an adaptive signal representation upon overcomplete fundamental waveforms, is a powerful tool in many applications. However, MP suffers from distinguishing a doublet structure. In this paper, the authors proposed an algorithm called compete matching pursuits (CMP), which can overcome this shortcoming and performance very well.
基金The National Natural Science Foundation of China(No.30900356,81071135)the National High Technology Research and Development Program of China(863Program)(No.2008AA02Z410)
文摘A multichannel matching pursuit(MMP)algorithm is proposed to decompose the one-dimensional multichannel non-stationary magnetoencephalography(MEG)signal at a single-trial level.The single-channel matching pursuit(MP)linearly decomposes the signal into a set of Gabor atoms,which are adaptively chosen from an overcomplete dictionary with good time-frequency characters.The MMP is the extension of the MP,which represents multichannel signals using linear combination of Gabor atoms with the same occurrence,frequency,phase,and time width,but varying amplitude in all channels.The results demonstrate that the MMP can optimally reconstruct the original signal and automatically remove artifact noises.Moreover,the coherence between the 3D source reconstruction and the prior knowledge of psychology further suggests that the MMP is effective in MEG single-trial processing.
基金The National Basic Research Program of China(973Program)(No.2013CB329003)
文摘To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.
基金The National Natural Science Foundation of China under contract No.11704225the Shandong Provincial Natural Science Foundation under contract No.ZR2016AQ23+3 种基金the State Key Laboratory of Acoustics,Chinese Academy of Sciences under contract No.SKLA201902the National Key Research and Development Program of China contract No.2018YFC1405900the SDUST Research Fund under contract No.2019TDJH103the Talent Introduction Plan for Youth Innovation Team in Universities of Shandong Province(Innovation Team of Satellite Positioning and Navigation)
文摘The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realistic solutions.The empirical orthonormal function(EOF)is capable of a very large compression of the data set.In this paper,the non-linear response of the sound pressure to SSP is linearized using a first order Taylor expansion,and the pressure is expanded in a sparse domain using EOFs.Since the parameters of the inverse model are sparse,compressive sensing(CS)can help solve such underdetermined problems accurately,efficiently,and with enhanced resolution.Here,the orthogonal matching pursuit(OMP)is used to estimate range-independent acoustic SSPs using the simulated acoustic field.The superior resolution of OMP is demonstrated with the SSP data from the South China Sea experiment.By shortening the duration of the training set,the temporal correlation between EOF and test sets is enhanced,and the accuracy of sound velocity inversion is improved.The SSP estimation error versus depth is calculated,and the 99%confidence interval of error is within±0.6 m/s.The 82%of mean absolute error(MAE)is less than 1 m/s.It is shown that SSPs can be well estimated using OMP.
基金supported by National Natural Science Foundation of China (Grant No. 60672108, Grant No. 60372020)
文摘The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
基金supported by Macao FDCT(098/2012/A3)Research Grant of the University of Macao(UL017/08-Y4/MAT/QT01/FST)+1 种基金National Natural Science Funds for Young Scholars(10901166)Sun Yat-sen University Operating Costs of Basic ResearchProjects to Cultivate Young Teachers(11lgpy99)
文摘Appealing to the Clifford analysis and matching pursuits, we study the adaptive decompositions of functions of several variables of finite energy under the dictionaries consisting of shifted Cauchy kernels. This is a realization of matching pursuits among shifted Cauchy kernels in higher-dimensional spaces. It offers a method to process signals in arbitrary dimensions.
文摘To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.
文摘A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.
文摘In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure with local self-adaption. We expand the time-frequency dictionary library with Ricker, Morlet, and mixed phase seismic wavelets, to make the method more suitable for seismic signal time-frequency decomposition. In this paper, we demonstrated the algorithm theory using synthetic seismic data, and tested the method using synthetic data with 25% noise. We compared the matching pursuit results of the time-frequency dictionaries. The results indicated that the dictionary which matched the signal characteristics better would obtain better results, and can reflect the information of seismic data effectively.
文摘Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided waves modes of the reflection signals in pipes NDT very hard. In this work, firstly, the experiments are carried out to test two kinds of stainless steel pipes by applying guided waves NDT, one is integrated pipe and another is non-integrated pipe with a small hole defect, and the detected guided waves echo signals are respectively obtained. Secondly, the measured signals are processed by matching pursuit method and the Chirplet matching atom parameters are calculated. By calculating the time-frequency distributions spectrum of detected guided waves echo signals, torsional, flexural and longitudinal guided waves modes are identified from the intact pipe, and the two wave-packets with torsional and flexural guided waves modes are also identified from the pipe with hole defect. The results showed that the matching pursuit method has a tremendous advantage to identify different guided waves modes in pipes nondestructive testing.
文摘To obtain the sparse decomposition and flexible representation of traffic images,this paper proposes a fast matching pursuit for traffic images using differential evolution. According to the structural features of traffic images,the introduced algorithm selects the image atoms in a fast and flexible way from an over-complete image dictionary to adaptively match the local structures of traffic images and therefore to implement the sparse decomposition. As compared with the traditional method and a genetic algorithm of matching pursuit by using extensive experiments,the differential evolution achieves much higher quality of traffic images with much less computational time,which indicates the effectiveness of the proposed algorithm.
基金This study was supported by the Yangtze University Innovation and Entrepreneurship Course Construction Project of“Mobile Internet Entrepreneurship”.
文摘Compressive sensing theory mainly includes the sparsely of signal processing,the structure of the measurement matrix and reconstruction algorithm.Reconstruction algorithm is the core content of CS theory,that is,through the low dimensional sparse signal recovers the original signal accurately.This thesis based on the theory of CS to study further on seismic data reconstruction algorithm.We select orthogonal matching pursuit algorithm as a base reconstruction algorithm.Then do the specific research for the implementation principle,the structure of the algorithm of AOMP and make the signal simulation at the same time.In view of the OMP algorithm reconstruction speed is slow and the problems need to be a given number of iterations,which developed an improved scheme.We combine the optimized OMP algorithm of constraint the optimal matching of item selection strategy,the backwards gradient projection ideas of adaptive variance step gradient projection method and the original algorithm to improve it.Simulation experiments show that improved OMP algorithm is superior to traditional OMP algorithm of improvement in the reconstruction time and effect under the same condition.This paper introduces CS and most mature compressive sensing algorithm at present orthogonal matching pursuit algorithm.Through the program design realize basic orthogonal matching pursuit algorithms,and design realize basic orthogonal matching pursuit algorithm of one-dimensional,two-dimensional signal processing simulation.