期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Model for Predicting Dynamic Cutting Forces in Sand Mould Milling with Orthogonal Cutting 被引量:2
1
作者 Zhong-De Shan Fu-Xian Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期95-105,共11页
Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete depositio... Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete deposition material. There is still a lack of theoretical research on the cutting force. In order to realize the prediction and control of the cut?ting force in the sand mould milling process, an analytical model of cutting force is proposed based on the unequal division shear zone model of orthogonal cutting. The deformation velocity relations of the chip within the orthogonal cutting shear zone are analyzed first. According to the flow behavior of granular, the unequal division shear zone model of sand mould is presented, in which the governing equations of shear strain rate, strain and velocity are estab?lished. The constitutive relationship of quasi?solid–liquid transition is introduced to build the 2D constitutive equation and deduce the cutting stress in the mould shear zone. According to the cutting geometric relations of up milling with straight cutting edge and the transformation relationship between cutting stress and cutting force, the dynamic cutting forces are predicted for di erent milling conditions. Compared with the experimental results, the predicted results show good agreement, indicating that the predictive model of cutting force in milling sand mould is validated. Therefore, the proposed model can provide the theoretical guidance for cutting force control in high e ciency mill?ing sand mould. 展开更多
关键词 Green manufacture cutting force Sand mould milling orthogonal cutting Quasi-solid-liquid transition
下载PDF
A cortical bone milling force model based on orthogonal cutting distribution method 被引量:6
2
作者 Qi-Sen Chen Li Dai +1 位作者 Yu Liu Qiu-Xiang Shi 《Advances in Manufacturing》 SCIE CAS CSCD 2020年第2期204-215,共12页
In orthopedic surgery,the bone milling force has attracted attention owing to its significant influence on bone cracks and the breaking of tools.It is necessary to build a milling force model to improve the process of... In orthopedic surgery,the bone milling force has attracted attention owing to its significant influence on bone cracks and the breaking of tools.It is necessary to build a milling force model to improve the process of bone milling.This paper proposes a cortical bone milling force model based on the orthogonal cutting distribution method(OCDM),explaining the effect of anisotropic bone materials on milling force.According to the model,the bone milling force could be represented by the equivalent effect of a transient cutting force in a rotating period,and the transient milling force could be calculated by the transient milling force coefficients,cutting thickness,and cutting width.Based on the OCDM,the change in transient cutting force coefficients during slotting can be described by using a quadratic polynomial.Subsequently,the force model is updated for robotic bone milling,considering the low stiffness of the robot arm.Next,an experimental platform for robotic bone milling is built to simulate the milling process in clinical operation,and the machining signal is employed to calculate the milling force.Finally,according to the experimental result,the rationality of the force model is verified by the contrast between the measured and predicted forces.The milling force model can satisfy the accuracy requirement for predicting the milling force in the different processing directions,and it could promote the development of force control in orthopedic surgery. 展开更多
关键词 Robotic milling force Cortical bone cutting force coefficient orthogonal cutting distribution
原文传递
Cutting Behavior of Cortical Bone in Different Bone Osteon Cutting Angles and Depths of Cut
3
作者 Yuanqiang Luo Yinghui Ren +3 位作者 Yang Shu Cong Mao Zhixiong Zhou Z.M.Bi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期80-91,共12页
Cortical bone is semi-brittle and anisotropic,that brings a challenge to suppress vibration and avoid undesired fracture in precise cutting process in surgeries.In this paper,a novel analytical model is proposed to re... Cortical bone is semi-brittle and anisotropic,that brings a challenge to suppress vibration and avoid undesired fracture in precise cutting process in surgeries.In this paper,a novel analytical model is proposed to represent cortical bone cutting processes.The model is utilized to predict the chip formations,material removal behavior and cracks propagation under varying bone osteon cutting angles and depths.Series of orthogonal cutting experiments were conducted on cortical bone to investigate the impact of bone osteon cutting angle and depth of cut on cutting force,crack initialization and propagation.The observed chip morphology highly agreed with the prediction of chip formation based on the analytical model.The curly,serrated,grainy and powdery chips formed when the cutting angle was set as 0°,60°,90°,and 120°,respectively.Cortical bone were removed dominantly by shearing at a small depth of cut from 10 to 50μm,and by a mixture of pealing,shearing,fracture and crushing at a large depth of cut over 100μm at different bone osteon angles.Moreover,its fracture toughness was calculated based on measured cutting force.It is found that the fluctuation of cutting force is suppressed and the bone material becomes easy to remove,which attributes to lower fracture toughness at bone osteon cutting angle 0°.When the cutting direction develops a certain angle to bone osteon,the fracture toughness increases then the crack propagation is inhibited to some extent and the fluctuation of cutting force comparatively decreases.There is a theoretical and practical significance for tools design and operational parameters choice in surgeries. 展开更多
关键词 Bone cutting surgery orthogonal cutting models Anisotropic materials Chip formation Crack initialization and propagation Fracture toughness
下载PDF
Study of material removal behavior on R-plane of sapphire during ultra-precision machining based on modified slip-fracture model 被引量:2
4
作者 Suk Bum Kwon Aditya Nagaraj +1 位作者 Hae-Sung Yoon Sangkee Min 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2020年第3期141-155,共15页
In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting dir... In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting direction of resultant force. Anisotropic characteristics of crack morphology and ductility of machining depending on cutting direction were explained in detail with modified fracture cleavage and plastic deformation parameters. Through the analysis, it was concluded that crack morphologies were mainly determined by the interaction of multiple fracture systems activated while, critical depth of cut was determined by the dominant plastic deformation parameter. In addition to this, by using proportionality relationship between magnitude of resultant force and depth of cut in the ductile region, an empirical model for critical depth of cut was developed. 展开更多
关键词 Ductile-brittle transition Crack morphology Single crystal sapphire Deformation mechanism orthogonal cutting Ultra-precision machining
下载PDF
Finite Element Investigation of the Influence of SiC Particle Distribution on Diamond Cutting of SiCp/AI Composites 被引量:1
5
作者 Shijin Lu Zengqiang Li +4 位作者 Junjie Zhang Jianguo Zhang Xiaohui Wang Yongda Yan Tao Sun 《Nanomanufacturing and Metrology》 2020年第4期251-259,共9页
Characteristics of internal microstructures have a strong impact on the properties of particulate reinforced metal composites.In the present work,we perform finite element simulations to elucidate fundamental mechanis... Characteristics of internal microstructures have a strong impact on the properties of particulate reinforced metal composites.In the present work,we perform finite element simulations to elucidate fundamental mechanisms involved in the ultraprecision orthogonal cutting of aluminum-based silicon carbide composites(SiCp/AI),with an emphasis on the influence of particle distribution characteristic.The SiCp/AI composite with a particle volume fraction of 25 vol%and a mean particle size of 10|im consists of randomly distributed polygon-shaped SiC particles,the elastic deformation and brittle failure of which are described by the brittle cracking model.Simulation results reveal that in addition to metal matrix tearing,cuttinginduced particle deformation in terms of dislodging,debonding,and cracking plays an important role in the microscopic deformation and correlated machining force variation and machined surface integrity.It is found that the standard deviation of particle size to the mean value has a strong influence on the machinability of microscopic particle-tool edge interactions and macroscopically observed machining results.The present work provides a guideline for the rational synthesis of particulate-reinforced metal composites with high machinability. 展开更多
关键词 SiCp/AI composites orthogonal cutting Particle-tool interaction Particle distribution FE simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部