利用可见/近红外高光谱(400 nm^1 000 nm)成像技术实现对荷斯坦奶牛、秦川牛、西门塔尔牛、安格斯牛、力木赞牛5个品种牛肉进行快速无损判别。首先对原始光谱进行预处理,并利用光谱-理化值共生距离法(sample set partitioning based on ...利用可见/近红外高光谱(400 nm^1 000 nm)成像技术实现对荷斯坦奶牛、秦川牛、西门塔尔牛、安格斯牛、力木赞牛5个品种牛肉进行快速无损判别。首先对原始光谱进行预处理,并利用光谱-理化值共生距离法(sample set partitioning based on joint X-Y distance,SPXY)法划分样本集;结合偏最小二乘判别模型(partial least squares-discrimination analysis,PLS-DA),K最近邻(K-nearest neighbor,KNN)模型和径向基函数-支持向量机(radial basis function-support vector machine,RBF-SVM)模型进行全波段及特征波段判别分析。结果表明,一阶导数(first derivative,FD)法为最优预处理方法;基于RBF-SVM法所建模型的校正集与预测集准确率分别为100%、99%。可见,基于高光谱成像技术能够获得较好的牛肉品种判别效果。展开更多
文摘利用可见/近红外高光谱(400 nm^1 000 nm)成像技术实现对荷斯坦奶牛、秦川牛、西门塔尔牛、安格斯牛、力木赞牛5个品种牛肉进行快速无损判别。首先对原始光谱进行预处理,并利用光谱-理化值共生距离法(sample set partitioning based on joint X-Y distance,SPXY)法划分样本集;结合偏最小二乘判别模型(partial least squares-discrimination analysis,PLS-DA),K最近邻(K-nearest neighbor,KNN)模型和径向基函数-支持向量机(radial basis function-support vector machine,RBF-SVM)模型进行全波段及特征波段判别分析。结果表明,一阶导数(first derivative,FD)法为最优预处理方法;基于RBF-SVM法所建模型的校正集与预测集准确率分别为100%、99%。可见,基于高光谱成像技术能够获得较好的牛肉品种判别效果。