期刊文献+
共找到1,399篇文章
< 1 2 70 >
每页显示 20 50 100
Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations
1
作者 Jiaqiong Wang Tao Yang +2 位作者 Chen Hu Yu Zhang Ling Zhou 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1203-1218,共16页
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second... To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model. 展开更多
关键词 HIGH-SPEED partial flow pump orthogonal test optimal design numerical calculation
下载PDF
Orthogonal design and numerical simulation of room and pillar configurations in fractured stopes 被引量:7
2
作者 吴爱祥 黄明清 +3 位作者 韩斌 王贻明 于少峰 缪秀秀 《Journal of Central South University》 SCIE EI CAS 2014年第8期3338-3344,共7页
Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an... Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment. 展开更多
关键词 orthogonal design numerical simulation surface movement roof settlement stope stability room and pillarconfiguration
下载PDF
Numerical study on optimal structural parameters of train wind barrier based on orthogonal design 被引量:1
3
作者 HAN Yan MI Li-hua +1 位作者 SHEN Lian CAI Chun-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2706-2718,共13页
Wind barriers have attracted significant attention as an effective measure to ensure train safety under crosswinds.However,in past decades,the influence of structural parameters such as the height and ventilation rati... Wind barriers have attracted significant attention as an effective measure to ensure train safety under crosswinds.However,in past decades,the influence of structural parameters such as the height and ventilation ratio of wind barriers on the difference of the average pressure coefficient between the train windward and leeward surface(ΔCp)has not been fully investigated.To determine the influence of the interaction among the three factors,namely the wind barrier height(H),ventilation ratio(R),and distance to the train(D),twenty five numerical simulation cases with different structural parameters were considered based on an orthogonal design.The shear stress transfer(SST)k-ωturbulent model was employed to calculate the wind pressure coefficients,and the calculation accuracy was validated by using wind tunnel experiments.The results indicated that with an increase in R,ΔCp first decreased and then increased,andΔCp decreased while D increased.Moreover,with the increase in H,ΔCp first increased and then decreased.Therefore,these three factors must be considered during the installation of wind barriers.Furthermore,according to a range analysis(judging the relative importance of the three factors intuitively),the three factors were ranked in the following order:R>H>D.Based on a variance analysis,R was found to be of high significance toΔCp,followed by H,which was significant,whereas D had relatively insignificant influence.Finally,the optimal values of R and H were determined to be 20%and 110 mm,respectively.And when R=40%,H=85 mm,the train was relatively unsafe under these such conditions.The findings of this study provide significant guidance for the structural design of wind barriers. 展开更多
关键词 wind barrier ventilation ratio HEIGHT numerical simulation orthogonal design
下载PDF
THE CONSTRUCTION OF ORTHOGONAL WAVELET BASIS ON[0,1] AND NUMERICAL SIMULATION
4
作者 Yi Baolin Ye Biquan(College of Mathematics Science, Wuhan University, Wuhan 430072,China) 《Wuhan University Journal of Natural Sciences》 CAS 1998年第4期406-406,共1页
In this paper, we show the construction of orthogonal wavelet basis on the interval [0, 1],using compactly supportted Daubechies function. Forwardly, we suggest a kind of method to deal with the differential operator ... In this paper, we show the construction of orthogonal wavelet basis on the interval [0, 1],using compactly supportted Daubechies function. Forwardly, we suggest a kind of method to deal with the differential operator in view of numerical analysis and derive the appoximation algorithm of wavelet ba-sis and differential operator, which affects on the basis, to functions belonging to L2 [0, 1 ]. Numerical computation indicate the stability and effectiveness of the algorithm. 展开更多
关键词 multiresolution analysis wavelet orthogonal basis differential operator numerical simulation
下载PDF
Optimization of a Centrifugal Pump Used as a Turbine Impeller By Means of an Orthogonal Test Approach 被引量:7
5
作者 Peng Tian Jun Huang +1 位作者 Weidong Shi Ling Zhou 《Fluid Dynamics & Materials Processing》 EI 2019年第2期139-151,共13页
A prototype centrifugal pump with a specific speed of 110 is used to investigate and optimize the performances of a turbine for power generation.Particular attention is given to the design of the internal impeller.The... A prototype centrifugal pump with a specific speed of 110 is used to investigate and optimize the performances of a turbine for power generation.Particular attention is given to the design of the internal impeller.The internal flow field is simulated in the framework of a commercial computational fluid dynamics software(ANSYS).Four geometrical parameters of the impeller are considered,i.e.,the inlet diameter,the inlet width,the blade number,and the blade angle.The optimization is carried out on the basis of a three-level approach relying on an orthogonal test method.The results of the numerical simulations show good agreement with the experimental tests under different flow conditions.In accordance with the L9(34)design table,the head and efficiency under the rated flow rate of the nine designed schemes are calculated and processed with the method of range analysis to obtain an optimized model. 展开更多
关键词 Pump AS TURBINE numerical calculation orthogonal test OPTIMIZATION design
下载PDF
Finite Element Numerical Simulation of Ground Subsidence in Liangjia Colliery
6
作者 张力 刘锡良 王来 《Transactions of Tianjin University》 EI CAS 2002年第3期200-202,共3页
Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the... Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the ground,the equivalent mechanical parameters of the rock stratums can be back-calculated by the properly treatment of coal excavation area,then the ground subsidence of other coal mining area can be predicted by FFM.It provided reference for the treatment of the buildings on the ground of this colliery. 展开更多
关键词 ground subsidence finite element numerical simulation back-analysis of parameters
下载PDF
Numerical simulation of intelligent compaction for subgrade construction 被引量:8
7
作者 MA Yuan LUAN Ying-cheng +1 位作者 ZHANG Wei-guang ZHANG Yu-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2173-2184,共12页
During the compaction of a road subgrade, the mechanical parameters of the soil mass change in real time, but current research assumes that these parameters remain unchanged. In order to address this discrepancy, this... During the compaction of a road subgrade, the mechanical parameters of the soil mass change in real time, but current research assumes that these parameters remain unchanged. In order to address this discrepancy, this paper establishes a relationship between the degree of compaction K and strain ε. The relationship between the compaction degree K and the shear strength of soil(cohesion c and frictional angle φ) was clearly established through indoor experiments. The subroutine UMAT in ABAQUS finite element numerical software was developed to realize an accurate calculation of the subgrade soil compaction quality. This value was compared and analyzed against the assumed compaction value of the model, thereby verifying the accuracy of the intelligent compaction calculation results for subgrade soil. On this basis, orthogonal tests of the influential factors(frequency, amplitude, and quality) for the degree of compaction and sensitivity analysis were carried out. Finally, the ‘acceleration intelligent compaction value’, which is based on the acceleration signal, is proposed for a compaction meter value that indicates poor accuracy. The research results can provide guidance and basis for further research into the accurate control of compaction quality for roadbeds and pavements. 展开更多
关键词 intelligent compaction numerical simulation dynamic change control indicators orthogonal experiment
下载PDF
Application of orthogonal experimental design and Tikhonov regularization method for the identification of parameters in the casting solidification process 被引量:4
8
作者 Dashan SUI Zhenshan CUI 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第1期13-21,共9页
The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized funct... The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions. 展开更多
关键词 orthogonal experimental design Regularization method Parameters identification numerical simulation
下载PDF
Mesoscopic-Scale Numerical Investigation Including the Influence of Process Parameters on LPBF Multi-Layer Multi-Path Formation 被引量:3
9
作者 Liu Cao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期5-23,共19页
As a typical laser additive manufacturing technology,laser powder bed fusion(LPBF)has achieved demonstration applications in aerospace,biomedical and other fields.However,how to select process parameters quickly and r... As a typical laser additive manufacturing technology,laser powder bed fusion(LPBF)has achieved demonstration applications in aerospace,biomedical and other fields.However,how to select process parameters quickly and reasonably is still themain concern of LPBF production.In order to quantitatively analyze the influence of different process parameters(laser power,scanning speed,hatch space and layer thickness)on the LPBF process,the multilayer and multi-path forming process of LPBF was predicted based on the open-source discrete element method framework Yade and the open-source finite volume method framework OpenFOAM.Based on the design of experiments method,a four-factor three-level orthogonal test scheme was designed,and the porosity and surface roughness data of each calculation scheme were extracted.By analyzing the orthogonal test data,it was found that as the laser power increased,the porosity decreased,and as the scanning speed,hatch space,and layer thickness increased,the porosity increased.In addition,the influence of laser power and scanning speed on surface roughness showed a trend of decreasing first and then increasing,while the influence of scanning distance and layer thickness on surface roughness showed amonotonous increasing trend.The order of the influence of each process parameter on porosity was:scanning speed>laying thickness>laser power>hatch space,and the order of the influence of each process parameter on surface roughness was:hatch space>layer thickness>laser power>scanning speed.So the porosity of the part is most sensitive to scanning speed,and the surface roughness is the most sensitive to hatch space.The above conclusions are expected to provide process control basis for actual LPBF production of the 316L stainless steel alloy. 展开更多
关键词 Laser powder bed fusion process parameter POROSITY surface roughness orthogonal test method numerical simulation
下载PDF
Parabolic Wave Propagation Modelling in Orthogonal Coordinate Systems 被引量:1
10
作者 袁德奎 林斌良 肖鸿 《海洋工程:英文版》 EI 2004年第3期445-456,共12页
This paper presents a numerical model study of the propagation of water waves using the parabolic approximation of the mild slope equation in the orthogonal coordinate system. Two types of coordinate systems are stud... This paper presents a numerical model study of the propagation of water waves using the parabolic approximation of the mild slope equation in the orthogonal coordinate system. Two types of coordinate systems are studied: (a) a general form of orthogonal coordinate system and (b) the conformal system, a special form of orthogonal coordinate system. Two typical examples, namely, expanded breakwaters and a circular channel, are studied to validate the model. First, the examples are studied by use of the general orthogonal coordinates. Then the same examples are computed by use of the conformal system. The computational results show that the conformal coordinate system generally gives better predictions than the general orthogonal system. A numerical technique for generating the conformal grid is combined with the numerical model to improve the practicability of the model. The comparison between the result from the numerical grid system and that from the analytical grid system shows that reliable computational results can be obtained by use of the numerical conformal grid system. 展开更多
关键词 orthogonal coordinates conformal mapping parabolic mild slope equation numerical grid generation
下载PDF
THE ORTHOGONAL POLYNOMIALS AND THE PADE'APPROXIMATION
11
作者 Faiz Ahmad (Department of Mathemahcs, Quaid-Azam University, Islamabad, Pakistan) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第7期663-668,共6页
The diagonal Pade' approximates for exp(x). tanx and tanhx are obtained in asimple manner by using the property of Legendre polynomials that on [ -1, 1] Pn (x)is orthogonal to every polynomial of lower degree. Gau... The diagonal Pade' approximates for exp(x). tanx and tanhx are obtained in asimple manner by using the property of Legendre polynomials that on [ -1, 1] Pn (x)is orthogonal to every polynomial of lower degree. Gauss's quadrature formula is used tofined the denomiators of some functions. 展开更多
关键词 orthogonal polynomials Pade' approximation Legendrepolynomials numerical approxiamtion
下载PDF
Optimized design of biconical liner by orthogonal method
12
作者 曲忠伟 颜事龙 +1 位作者 沈兆武 马宏昊 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期8-17,共10页
A biconical liner was optimized to improve its penetration ability. Its formation and pene- tration mechanism was studied through numerical simulation and experiments. And the influence of different liner geometry siz... A biconical liner was optimized to improve its penetration ability. Its formation and pene- tration mechanism was studied through numerical simulation and experiments. And the influence of different liner geometry sizes on the jet performance was analyzed using the orthogonal method. The liner formed the high-speed jet with an explosively formed projectile. The small angle 2a remarkably influenced the jet speed which was inversely proportional to 2a. And the liner thickness t' and large angle 2β had highly significant effect on the projectile speed. The liner was optimized at t' = 0. 14 cm, 2α = 50°, 2β = 135°, N = 0. 4 or 0. 5, when its jet speed respectively is at 6 613 m/s and 6 839 m/s and projectile speed is at 2 247 m/s and 2 095 m/s, steel target penetration is at 8. 24 cm and 8. 31 cm, and aperture is in 2.12 cm and 2.08 cm. The results show that target is penetrated by the high-speed jet and high-speed projectile resulting into double damages. The penetration ability is improved greatly. 展开更多
关键词 biconical liner orthogonal design numerical simulation JET explosively formed pro-jectile
下载PDF
Simulation analysis of hot dip galvanizing process parameters based on orthogonal experimental design
13
作者 LYU Junyi GE Liang MIAO Rui 《Baosteel Technical Research》 CAS 2018年第1期34-40,共7页
An iron and steel company' s hot galvanizing technology was chosen as the object. An orthogonal experimental scheme with 5 factors of mixed level was designed, according to the various factors affecting the distribut... An iron and steel company' s hot galvanizing technology was chosen as the object. An orthogonal experimental scheme with 5 factors of mixed level was designed, according to the various factors affecting the distribution of slag. For each scheme, the amount of slag and slag height in different orthogonal schemes by simulation were obtained with FLUENT software. Then, range and variance analyses were selected to compare the trend of slag height in the different process parameters of the hot dip galvanizing process. Finally, the optimal combination of the process parameters was obtained. 展开更多
关键词 hot dip galvanizing orthogonal experiment numerical simulation process optimization
下载PDF
A Perturbative-Based Generalized Series Expansion in Terms of Non-Orthogonal Component Functions 被引量:1
14
作者 Robert B. Szlavik Dana Paquin Galen E. Turner III 《Applied Mathematics》 2017年第1期106-116,共11页
In this paper we present a generalized perturbative approximate series expansion in terms of non-orthogonal component functions. The expansion is based on a perturbative formulation where, in the non-orthogonal case, ... In this paper we present a generalized perturbative approximate series expansion in terms of non-orthogonal component functions. The expansion is based on a perturbative formulation where, in the non-orthogonal case, the contribution of a given component function, at each point, in the time domain or frequency in the Fourier domain, is assumed to be perturbed by contributions from the other component functions in the set. In the case of orthogonal basis functions, the formulation reduces to the non-perturbative case approximate series expansion. Application of the series expansion is demonstrated in the context of two non-orthogonal component function sets. The technique is applied to a series of non-orthogonalized Bessel functions of the first kind that are used to construct a compound function for which the coefficients are determined utilizing the proposed approach. In a second application, the technique is applied to an example associated with the inverse problem in electrophysiology and is demonstrated through decomposition of a compound evoked potential from a peripheral nerve trunk in terms of contributing evoked potentials from individual nerve fibers of varying diameter. An additional application of the perturbative approximation is illustrated in the context of a trigonometric Fourier series representation of a continuous time signal where the technique is used to compute an approximation of the Fourier series coefficients. From these examples, it will be demonstrated that in the case of non-orthogonal component functions, the technique performs significantly better than the generalized Fourier series which can yield nonsensical results. 展开更多
关键词 Non-orthogonal FUNCTIONS SERIES EXPANSION APPROXIMATE SERIES EXPANSION Perturbative-Based APPROXIMATE EXPANSION numerical Approximations
下载PDF
TC4钛合金表面固体粒子冲蚀损伤行为及机理研究
15
作者 郭华锋 赵恩兰 +4 位作者 杨海峰 张万利 李龙海 刘磊 何绍华 《表面技术》 EI CAS CSCD 北大核心 2024年第13期128-138,共11页
目的探究TC4钛合金在固体粒子冲蚀下的损伤行为,揭示钛合金表面的冲蚀机理。方法采用自主搭建的冲蚀试验装置,以TC4钛合金为研究对象,综合运用正交试验法和控制变量法开展常温干砂粒冲蚀试验。通过扫描电镜综合分析冲蚀区域表面和截面... 目的探究TC4钛合金在固体粒子冲蚀下的损伤行为,揭示钛合金表面的冲蚀机理。方法采用自主搭建的冲蚀试验装置,以TC4钛合金为研究对象,综合运用正交试验法和控制变量法开展常温干砂粒冲蚀试验。通过扫描电镜综合分析冲蚀区域表面和截面的微观形貌,采用能谱仪分析冲蚀区域元素的组成,利用电子天平测量冲蚀磨损质量;讨论工艺参数对钛合金损伤行为及冲蚀机理的影响。结果相较于冲砂量和冲蚀角度,冲蚀距离对冲蚀量的影响更大;冲蚀量随着冲蚀角度的增加呈先增大后减小的趋势,在40°附近达到峰值。结合数值模拟和试验研究结果发现,钛合金的损伤形式和冲蚀机理与冲蚀角度密切相关,在低攻角时形成了较狭长的犁沟和挤压唇,发生了明显的塑性变形,容易产生二次撞击,表现为微切削机制;在中攻角时,微切削与锤击效应共存,损伤最为严重;在冲蚀角度为90°时,形成了较多的撞击坑、挤压唇及少量的疲劳剥层,主要为锤击效应引起的疲劳破坏。在低攻角时,磨料动能损失较小,随着冲蚀角度的增加,磨料动能损失增大,且在不同攻角下均有破碎磨料嵌入基体。结论冲蚀距离和冲砂量对钛合金冲蚀损伤的影响较为显著,冲蚀角度会影响钛合金的冲蚀机理,此研究结论可为钛合金结构件抗冲蚀设计提供理论依据。 展开更多
关键词 TI6AL4V钛合金 固体颗粒冲蚀 正交试验 数值模拟 冲蚀机理
下载PDF
多翼离心风机蜗壳气动性能与出风均匀性优化设计
16
作者 刘江 沈春根 林传生 《排灌机械工程学报》 CSCD 北大核心 2024年第6期591-597,604,共8页
以某型号风暖浴霸吹风系统的多翼离心风机为研究对象,利用ANSYS Fluent 2020 R2对原型风机的出口风量与均匀度进行仿真分析,结果显示仿真与实测误差在5%以内,验证了用CFD数值模拟方法来优化浴霸多翼离心风机的可靠性.将蜗壳型线参数化,... 以某型号风暖浴霸吹风系统的多翼离心风机为研究对象,利用ANSYS Fluent 2020 R2对原型风机的出口风量与均匀度进行仿真分析,结果显示仿真与实测误差在5%以内,验证了用CFD数值模拟方法来优化浴霸多翼离心风机的可靠性.将蜗壳型线参数化,通过正交试验设计,针对蜗舌放置角α、蜗舌半径R、等角螺线常数A(蜗壳周向面积)与风轮移动距离L(蜗舌与叶轮间隙)4个因素,制定了16组参数组合方案并进行了CFD数值模拟,得到各方案的出口风量与均匀度,并由均值与极差分析确定了最优参数组合.通过数值计算结果可知,优化后的风机在蜗舌附近区域湍流强度减小,内部流动改善.测试结果显示,优化后的风机出口风量提升7.3%,均匀度提升4.5%,全压效率提升5.9%.显著提升了风暖浴霸离心风机的出风性能和出口风速分布均匀性,对提高风暖浴霸取暖效率和增强人体舒适性有重要意义. 展开更多
关键词 多翼离心风机 蜗壳 蜗舌 正交试验 CFD数值模拟
下载PDF
模具和工艺参数对铝合金成形件回弹仿真研究
17
作者 项辉宇 黄辉琼 +1 位作者 冷崇杰 姜文正 《计算机仿真》 2024年第2期386-390,434,共6页
为研究成形参数对铝合金冲压成形件回弹的影响,以6016铝合金材料进行拉伸试验获取材料数据为基础,获取材料参数;以有限元DYNAFORM软件为载体,通过数值模拟对S形件进行拉延成形及后处理回弹分析;分别以模具参数、工艺参数为变化量,分析... 为研究成形参数对铝合金冲压成形件回弹的影响,以6016铝合金材料进行拉伸试验获取材料数据为基础,获取材料参数;以有限元DYNAFORM软件为载体,通过数值模拟对S形件进行拉延成形及后处理回弹分析;分别以模具参数、工艺参数为变化量,分析单因素参数对S形件回弹量的影响规律,同时考虑各参数的相互耦合作用,运用正交试验对对多参数进行优化组合,分析凸凹模间隙值、凹模圆角半径、摩擦系数、压边力、冲压速度与回弹量之间的关系;研究表明影响S形件回弹量的成形工艺参数主次顺序依次为凸凹模间隙值(A)、凹模圆角半径(E)、摩擦系数(D)、压边力(C)、冲压速度(B),为冲压生产从业人员和同类型冲压成形件提供有益的参考。 展开更多
关键词 数值模拟 模具参数 工艺参数 正交试验
下载PDF
宽负荷下切圆燃煤锅炉H_(2)S分布特性的数值模拟
18
作者 邓磊 袁茂博 +3 位作者 杨家辉 韩磊 姜家豪 车得福 《煤炭学报》 EI CAS CSCD 北大核心 2024年第6期2887-2895,共9页
锅炉采用空气分级燃烧降低NO_(x)排放的同时也提高了主燃区H_(2)S体积分数。炉墙壁面过高的H_(2)S体积分数是加剧水冷壁高温腐蚀的重要因素。为保障新能源并网发电,大型燃煤机组灵活调峰的需求增加,不同负荷下的水冷壁近壁面H_(2)S分布... 锅炉采用空气分级燃烧降低NO_(x)排放的同时也提高了主燃区H_(2)S体积分数。炉墙壁面过高的H_(2)S体积分数是加剧水冷壁高温腐蚀的重要因素。为保障新能源并网发电,大型燃煤机组灵活调峰的需求增加,不同负荷下的水冷壁近壁面H_(2)S分布特性值得关注。通过正交试验分析了切圆燃煤锅炉运行参数对水冷壁近壁面H_(2)S体积分数分布的影响。选取一台超临界600 MW切圆燃煤锅炉建立数值模型,设计L_(16)(4^(5))正交工况,覆盖100%BMCR、75%THA,50%THA以及35%BMCR四种负荷。建立了自定义SO_(x)生成模型以确定燃料硫的析出和转化路径,模型包含多表面反应子模型以描述焦炭与O_(2)/CO_(2)/H_(2)O等3种气体的异相反应,并确定焦炭气化反应消耗量占总消耗量的比例,进而对炉膛H_(2)S空间分布进行了模拟计算。研究表明,近壁面高体积分数H_(2)S区域主要位于投运燃烧器层中最下层燃烧器以下以及最上层燃烧器以上至SOFA层之间,烟气切圆沿炉膛高度增加逐渐增大是造成后一区域H_(2)S体积分数较高的重要原因。35%BMCR负荷下水冷壁重点区域的H_(2)S平均体积分数为364μL/L,明显低于其他负荷。锅炉运行参数对重点区域H_(2)S体积分数影响程度的排序为:锅炉负荷>一次风率>主燃区空气过量系数>假想切圆直径>燃烧器竖直摆角。 展开更多
关键词 切圆燃煤锅炉 宽负荷 H2S分布 正交分析 数值模拟
下载PDF
松软煤层大采高工作面煤壁片帮机理及深浅孔交替超前预注浆加固技术研究
19
作者 陈晓祥 韩文宇 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第3期11-22,共12页
目的为探究松软煤层大采高工作面煤壁片帮机理,并对片帮严重的松软煤层大采高工作面煤壁进行有效控制,方法利用材料力学理论得到煤壁片帮的频发位置,引入煤壁剪切破坏准则,得出松软煤体煤壁片帮的主控因素。并以李村煤矿1305工作面为例... 目的为探究松软煤层大采高工作面煤壁片帮机理,并对片帮严重的松软煤层大采高工作面煤壁进行有效控制,方法利用材料力学理论得到煤壁片帮的频发位置,引入煤壁剪切破坏准则,得出松软煤体煤壁片帮的主控因素。并以李村煤矿1305工作面为例,通过FLAC3D建立数值模型,以煤壁最大位移、煤体破坏深度、支承压力大小和支承压力峰值位置4个因素作为参考比较对象,通过引入正交试验法,研究了煤层埋深、内摩擦角、黏聚力、抗拉强度以及支护强度对煤壁片帮的影响程度。结果结果表明:煤体自身的物理力学性质(内摩擦角和黏聚力)是影响煤壁片帮的主要因素,其次煤体的赋存条件(埋深)也是一个较为关键的影响因素。结论工业性试验基于正交试验结果提出了大采高综采工作面深浅孔交替超前预注浆加固技术,有效控制了李村煤矿1305工作面煤壁片帮严重情况,为其他类似地质条件大采高综采工作面煤壁片帮控制提供了借鉴。 展开更多
关键词 大采高 松软煤层 煤壁片帮 正交试验 数值模拟
下载PDF
圆形抗滑桩-拱形挡土板支挡性能与参数分析
20
作者 凌贤长 邢文强 +2 位作者 唐亮 卢凡 丛晟亦 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第3期517-525,共9页
为规避当前施工方法的不足,发展安全、高效和可靠的施工方法。依托东北地区某高速铁路路堑边坡工程,采用适于机械钻孔的圆形抗滑桩代替现行矩形抗滑桩,预制拱形挡土板,本文提出一种新型拱形板-桩墙支挡体系;并构建有限元模型,分析桩长... 为规避当前施工方法的不足,发展安全、高效和可靠的施工方法。依托东北地区某高速铁路路堑边坡工程,采用适于机械钻孔的圆形抗滑桩代替现行矩形抗滑桩,预制拱形挡土板,本文提出一种新型拱形板-桩墙支挡体系;并构建有限元模型,分析桩长、桩径、桩间距以及拱形挡土板矢跨比对新型拱形板-桩墙支挡体系支护性能的影响;揭示不同参数下桩顶水平位移与桩身内力的变化规律。研究结果表明:桩长与桩身弯矩和剪力大小呈正相关关系,与桩顶水平位移呈负相关关系。桩长超过14 m时,其对桩顶水平位移、桩身弯矩和剪力的影响效应明显减弱;随着桩间距增大,桩顶水平位移增大但变化幅度逐渐减小。拱形挡土板矢跨比增大时,桩顶水平位移、桩身弯矩和剪力均减小。影响拱形板-桩墙体系支挡性能的因素依次为桩间距、桩长、桩径和矢跨比。研究结果为圆形抗滑桩-拱形挡土板支挡体系在实际工程中的应用提供新思路。 展开更多
关键词 高速铁路 路堑边坡 圆形抗滑桩 拱形挡土板 三维数值模型 正交分析 机械钻孔 支护性能
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部