In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(...In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(OPA)method,the nonlinear damping and stiffness are expanded into the linear combination of the state variable.The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of themean value.Afterwards,the stochastic vibro-impact systemcan be turned into an equivalent high-dimensional deterministic non-smooth system.Two different Poincarésections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response.Consequently,the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system.Furthermore,the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system.It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation.Increasing the randomintensitymay result in a diffusion-based trajectory and the impact with the constraint plane,which induces the topological behavior of the non-smooth system to change drastically.It is also found that grazing bifurcation appears in advance with increasing of the random intensity.The stronger impulse force can result in the appearance of the diffusion phenomenon.展开更多
Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing sys...Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12172266,12272283)the Bilateral Governmental Personnel Exchange Project between China and Slovenia for the Years 2021-2023(Grant No.12)+2 种基金Slovenian Research Agency ARRS in Frame of Bilateral Project(Grant No.P2-0137)the Fundamental Research Funds for the Central Universities(Grant No.QTZX23004)Joint University Education Project between China and East European(Grant No.2021122).
文摘In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(OPA)method,the nonlinear damping and stiffness are expanded into the linear combination of the state variable.The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of themean value.Afterwards,the stochastic vibro-impact systemcan be turned into an equivalent high-dimensional deterministic non-smooth system.Two different Poincarésections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response.Consequently,the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system.Furthermore,the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system.It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation.Increasing the randomintensitymay result in a diffusion-based trajectory and the impact with the constraint plane,which induces the topological behavior of the non-smooth system to change drastically.It is also found that grazing bifurcation appears in advance with increasing of the random intensity.The stronger impulse force can result in the appearance of the diffusion phenomenon.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10472091and10332030)
文摘Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.